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We investigate the influence of atomic motion on precision Rabi spectroscopy of ultracold fermionic atoms
confined in a deep one-dimensional optical lattice. We analyze the spectral components of longitudinal side-
band spectra and present a model to extract information about the transverse motion and sample temperature
from their structure. Rabi spectroscopy of the clock transition itself is also influenced by atomic motion in the
weakly confined transverse directions of the optical lattice. By deriving Rabi flopping and Rabi line shapes of
the carrier transition, we obtain a model to quantify trap-state-dependent excitation inhomogeneities. The
inhomogeneously excited ultracold fermions become distinguishable, which allows s-wave collisions. We
derive a detailed model of this process and explain observed density shift data in terms of a dynamic mean-
field shift of the clock transition.
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I. INTRODUCTION

Evaluations of optical frequency standards based on ultra-
cold neutral 87Sr atoms confined in one-dimensional �1D�
optical lattices now surpass �1,2� the best 133Cs primary stan-
dards �3–5�. The high precision achieved with the Sr optical
lattice clock relies on high quality factor optical spectros-
copy �6� enabled by confining the atoms in a magic wave-
length optical lattice �7� and probing along the strong con-
finement axis in the Lamb-Dicke and resolved sideband
regimes �8,9�. No studies yet indicate a fundamental limit at
the 10−17 level of accuracy �1,10–12�. Reaching new levels
of accuracy demands that ever more subtle spectroscopic ef-
fects are taken into account. Recently, a density related clock
frequency shift was measured �10�, even though the clock is
based on fermionic 87Sr where collisions at temperatures of a
few �K are suppressed by the Pauli exclusion principle.

In this paper, we present a systematic experimental and
theoretical investigation of the Rabi spectroscopy process
used in the 87Sr optical lattice clock. This investigation re-
sults in a more detailed model of the density-dependent clock
frequency shift. These results are used to describe our recent
experimental work �10�, which has led to several different
theoretical models of fermion clock frequency shifts �13,14�.

The experimental setup is described in Sec. II. We present
a perturbative model of the 1D lattice in Sec. III, derive
sideband spectra in Sec. IV, and show how temperature can
be obtained from their shape. Furthermore, we discuss time-
dependent Rabi flopping and spectroscopic line shapes as
well as their dependence on sample temperature and probe-
induced inhomogeneities in Sec. V. In particular, we identify

the effect of transverse motion on the excitation process as
the main source of inhomogeneity in the system causing at-
oms to lose their indistinguishability. Accurate modeling of
the process in Sec. VI allows relating this loss of indistin-
guishability to a dynamic clock frequency shift proportional
to the atomic density.

II. EXPERIMENTAL SETUP

The ultracold atomic sample of 87Sr is produced by stan-
dard laser cooling techniques and trapped at the antinodes of
a vertically oriented 1D optical lattice. The 87Sr 1S0− 3P0
clock transition is subsequently interrogated with laser light
propagating collinear with the lattice axis. The geometry is
shown schematically in Fig. 1�a�. After the spectroscopic
probe has redistributed atomic population between the
ground �g��1S0� and excited �e��3P0� clock states, the popu-
lations are measured via fluorescence detection on the 1S0
− 1P1 transition, heating the sample out of the trap. By re-
peating many such measurements, data are aggregated while
the spectroscopy laser is scanned across the clock transition
to acquire a spectrum, the probe pulse time is varied to ob-
tain population dynamics, or the laser frequency is stabilized
to the clock transition for clock operation.

Details of the setup are described elsewhere �15,16�; here
we summarize the important experimental parameters for
reference. The atoms are cooled in a two stage magneto-
optical trap �MOT� on the transitions indicated by solid ar-
rows in Fig. 1�b�. The first stage uses the strong 30 MHz
linewidth 1S0− 1P1 transition at 461 nm. The second stage
MOT uses dual-frequency narrow line cooling �17,18� on the
1S0�F=9 /2�− 3P1�F=9 /2,11 /2� intercombination lines �7
kHz� at 689 nm. The optical lattice beam is overlapped with
the second stage MOT and atoms are directly cooled into the
lattice. The 1D optical lattice is formed by two counterpropa-
gating laser beams near the Stark cancellation wavelength
�=813.43 nm, where the differential polarizability of 1S0
and 3P0 clock states is zero �7�. In this experiment, a Gauss-
ian beam tilted at a small angle with respect to gravity is
focused to a waist w0�30 �m �1 /e2 radius of intensity� and
retroreflected by a spherical mirror with matching curvature.
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The optical lattice forms in the overlap between the two
beams. The typical lattice depth is U0�130h�rec�22 �K,
where �rec=h / �2m�2� is the lattice recoil frequency.

The sample temperature is controlled by additional cool-
ing �heating� resulting in a sample of �4000 atoms at tem-
peratures variable from 1 to 5 �K. The atoms are Doppler
cooled �heated� along the transverse directions and sideband
cooling �heating� is performed along the lattice axis with
light detuned from the 1S0�F=9 /2�− 3P1�F=11 /2� transi-
tion.

Using optical pumping, the atoms are then spin-polarized
in a weak magnetic field. By choosing the correct polariza-
tion for the optical pumping beam, atoms are polarized into
one of the two maximally polarized states with magnetic
quantum number mF= �9 /2. During the polarization step,
the sideband cooling �heating� light is simultaneously ap-
plied.

For carrier spectroscopy relevant to optical clock opera-
tion we probe the 1S0− 3P0 clock transition along the strong
confinement axis of the lattice in the Lamb-Dicke regime and
the resolved sideband limit �8,9� with a sub-hertz cavity-
stabilized diode laser �19�. Here, the trap frequency of 70–80
kHz is much larger than the probe recoil frequency of 4.7
kHz, corresponding to the probe wavelength of 698 nm, and
the natural transition linewidth of 1 mHz �20–22�. This en-
sures a clock interrogation which is highly insensitive to
Doppler and recoil effects. The duration of a clock spectros-
copy pulse is 80 ms and the probe beam has a �5 times
larger waist than the lattice beam to minimize inhomogene-
ities introduced by the Gaussian probe beam profile. To

probe time-domain Rabi flopping, the pulse time is varied.
The motional sidebands are probed with the clock laser de-
tuned by the motional trap frequency.

After applying the spectroscopy pulse, atoms remaining in
the ground state are detected by measuring fluorescence on
the 1S0− 1P1 transition. This detection pulse heats all 1S0 at-
oms out of the trap. The population in the 3P0 state is then
measured by first pumping the atoms back to the 1S0 state via
3P1 and by again measuring fluorescence on the 461 nm
transition. Combining data from these two measurements re-
sults in a normalized excitation fraction. The optical lattice is
reloaded with a new sample for each new measurement with
a �1 s cycle time.

III. SPECTROSCOPY IN A ONE-DIMENSIONAL OPTICAL
LATTICE

Neglecting optical aberrations in the transverse beam pro-
file, the resulting trapping potential near the waist can be
written as

U�z,r� = − U0 cos2�kz�e−2r2/w0
2

+ mgz , �1�

where r=	x2+y2 designates the transverse distance from the
lattice axis, z is the longitudinal coordinate, k=2� /� is the
lattice wave number, g�9.81 m /s2 is the gravitational ac-
celeration, and m is the mass of 87Sr. The resulting trap is a
nearly vertical stack of flat ellipsoids �“pancakes”� with an
aspect ratio given by lattice wavelength and beam waist.

The gravitational energy shift between neighboring pan-
cakes ��1 kHz� breaks the translational symmetry of the
potential and for our trap depths intersite tunneling becomes
strongly suppressed �23�. The resulting separation of a lattice
band into isolated sites is called a Wannier-Stark ladder �24�.
Each site has several states whose energies are determined
by the gravity-free lattice structure, but their energy widths
decrease according to the residual Landau-Zener tunneling
rates to neighboring sites. For our trap depths, temperatures
of a few �K, and low site populations, this complex problem
simplifies drastically: we can consider single particles in iso-
lated sites, neglect intersite tunneling, and use thermal aver-
aging to evaluate the relevant spectroscopic parameters.

However, even the single site potential is not separable
into independent coordinates and it has no analytical solu-
tions. We approximate the longitudinal potential in a site as a
one-dimensional harmonic oscillator in z with a quartic dis-
tortion. The more gentle transverse confinement given by the
Gaussian lattice beam profile is approximated as a two-
dimensional harmonic oscillator in r. We also include the
first-order coupling term between the longitudinal and trans-
verse degrees of freedom and find

U�z,r� � U0
− 1 + k2z2 +
2

w0
2r2 −

k4

3
z4 −

2k2

w0
2 z2r2� . �2�

Treating the quartic distortion and the coupling term in first-
order perturbation theory for harmonic oscillator states �n�
= �nx ,ny ,nz� gives an energy spectrum

FIG. 1. �Color online� �a� Experimental setup. A one-
dimensional optical lattice is oriented vertically along the z axis to
suppress tunneling. The lattice wavelength is 813.43 nm. The clock
probe beam is aligned collinear with the optical lattice and the
probe beam is transmitted by the mirror used to retroreflect the
lattice. �b� The optical transitions used to cool are 1S0− 1P1 at 461
nm and 1S0− 3P1 at 689 nm. The spectroscopic transition between
the ground �g� and excited �e� clock states is the doubly forbidden
intercombination transition 1S0− 3P0 at 698 nm. �c� High quality
factor spectroscopy performed on lattice trapped atoms gives rise to
three dominant spectral features; a central carrier �green arrow in
the middle� where the motional state �n� is conserved accompanied
by a red and blue sideband �bottom red and top blue arrows� where
the motional state decreases and increases by 1, respectively.
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En/h � �z
nz +
1

2
� + �r�nx + ny + 1� −

�rec

2

nz

2 + nz +
1

2
�

− �rec
�r

�z
�nx + ny + 1�
nz +

1

2
� , �3�

where we identify the longitudinal and transverse trap fre-
quencies from the harmonic approximation to the potential
as

�z = 2�rec	 U0

h�rec
, �4�

�r =	 U0

m�2w0
2 . �5�

These relations allow determination of the trap depth and
beam waist by measuring the trap frequencies. The number
of states in the trap is approximately given by NzNr

2, with

Nz �
U0

h�z
=	 U0

4h�rec
, �6�

Nr � Nz
�z

�r
. �7�

Typical longitudinal and transverse trap frequencies in our
experiment are 80 kHz and 450 Hz, respectively, so that
Nz�Nr��6�1000�. Due to the quartic distortion by the sinu-
soidal lattice potential, the longitudinal energy gap,

��nz� � �Enx,ny,nz+1 − Enx,ny,nz
�/h

= �z − �rec�nz + 1� − �rec
�r

�z
�nx + ny + 1� , �8�

determines the measured longitudinal trap frequency as ap-
proximately �z−�rec instead of �z. In contrast, the r2z2 cou-
pling term in Eq. �2� has a more subtle effect. Radially os-
cillating atoms explore trap regions with different
longitudinal trap frequencies and their response to the spec-
troscopy laser changes.

Vibrational laser spectroscopy of trapped atoms is a well
described topic �8,9�. The Rabi frequency associated with a
traveling wave probe of wave vector kp between initial and
final trap states �ni� and �n f� is

�nf←ni
= �0n f�eikp·x�ni� , �9�

where the free-space Rabi frequency �0 is given by the di-
pole matrix element between the electronic states. Thus, at-
oms in different motional states will respond differently to
the same probe field. The resulting spread in Rabi frequen-
cies leads to inhomogeneities in the system for any nonzero
temperature.

In the following sections, we will model the most promi-
nent spectroscopic features in a scan across the carrier and
motional sideband resonances and compare these models to
experimental data to extract information about sample tem-
peratures. The temperature as well as an effective probe laser
misalignment will then be used to quantify the degree of

inhomogeneity in the system leading to a model of colli-
sional frequency shifts for ultracold fermions in a 1D optical
lattice.

IV. SIDEBAND SPECTROSCOPY

The motional sideband spectrum of lattice-trapped atoms
exhibits features similar to the well known spectra of har-
monically trapped ions �9�. Each data point in Fig. 2 was
obtained by measuring the excited state fraction after choos-
ing a probe laser detuning in the vicinity of the clock transi-
tion and applying an 80 ms Rabi pulse. The traces show a
narrow carrier transition that is �mostly� free of motional
effects accompanied by motional sidebands at the longitudi-
nal trap frequency ��z�80 kHz�. The red-detuned sideband
�nz→nz−1� is suppressed with respect to the blue-detuned
sideband �nz→nz+1� indicative of the temperature along the
strong confinement axis. In contrast to ion trap experiments,
the sidebands are smeared out toward the carrier �25�. This
skewing is due to the coupling between the longitudinal and
transverse degrees of freedom, which makes the longitudinal
transition frequency depend on the transverse motional state.
The resulting line shape carries information about the poten-
tial and the longitudinal and transverse temperatures of the
trapped atoms.

The clock transition’s natural linewidth is on the order of
mHz corresponding to a metastable lifetime on the order of
150 s �20�. At large probe powers, saturation broadening can
increase the carrier linewidth to �1 kHz. At typical Rabi
probe times of 80 ms, the population dynamics has dephased
to an equilibrium �see Sec. V� allowing a time-independent
model of the sideband shape. In the following, we will focus
on the first blue longitudinal sideband.

The blue longitudinal sideband is produced by atoms un-
dergoing the clock transition along with a motional transition
�ni�= �nx ,ny ,nz�→ �n f�= �nx ,ny ,nz+1�. The probe laser detun-
ing � exciting this transition is given by the energy difference
in Eq. �8� and depends on the transverse motional state. The
relative blue sideband amplitude for a given probe detuning
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FIG. 2. �Color online� Sideband spectra with longitudinal and
transverse cooling �circles� and without in-trap cooling �open
squares� by scanning the spectroscopy laser across the electronic
transition with a Rabi pulse time of 80 ms and Rabi frequencies on
the order of 1 kHz. The solid lines are combinations of fits to the
carrier and sidebands.
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is thus given by the transverse motional distribution. By as-
suming a thermal distribution among the transverse trap
states, we can relate the shape of the shallow sideband edge
�facing the carrier� to the transverse temperature, as shown in
the Appendix. We find an approximate line shape as a func-
tion of detuning � from the carrier �valid for the shallow
sideband edge�:

	blue
nz ��� =


2

�̃�nz�
�1 −

�

�̃�nz�
�e−
�1−�/�̃�nz�����̃�nz� − �� , �10�

with 
= ��̃�nz� /�rec��h�z /kBTr�, uncoupled longitudinal en-
ergy gap �̃�nz�=�z−�rec�nz+1�, and the Heaviside function
�. The sideband shape in Eq. �10� is approximately area
normalized and its main feature is an exponential slope fall-
ing toward the carrier produced by the changing longitudinal
energy gap with transverse excursion �the third term in Eq.
�8��. This exponential is multiplied by a linear term rising
toward the carrier and vanishing at �= �̃�nz�, which arises
from the degenerate two-dimensional transverse confine-
ment. These two features dominate the shape of the sideband
and capture the shallow slope toward the carrier. Equation
�10� neglects the transition between the shallow edge and the
underlying power-broadened Lorentzian that determines the
sharp edge.

The final, thermally averaged, blue-detuned sideband ab-
sorption cross section is then given by �see the Appendix�

	blue��� � �
nz=0

Nz

e−Enz
/kBTz	blue

nz ��� , �11�

as a Boltzmann-weighted superposition of single �longitudi-
nal� state sidebands shifted by the anharmonicity of the lon-
gitudinal trap. Here Enz

is the energy of longitudinal state nz

neglecting the r2z2 coupling term. In addition, each nz→nz
+1 sideband is smeared out toward the carrier by the cou-
pling term between the longitudinal and transverse traps.
Each component’s base Lorentzian would additionally be
broadened by the lifetime of the corresponding Wannier-
Stark state. However, for the relevant states and trap depths,
this broadening is much smaller than the power-broadened
width and can be ignored.

Regardless of the details of the component line shapes in
Eq. �11�, the only difference between the red and blue side-
bands should be that the Boltzmann weights are shifted ac-
cording to nz�nz+1 since the particle starts in the higher-
lying motional state. There is no contribution from the
longitudinal ground state to the red sideband cross section
and the ratio of integrated sideband absorption cross sections
obeys

	red
total

	blue
total =

�
nz=1

Nz

e−Enz
/kBTz

�
nz=0

Nz

e−Enz
/kBTz

= 1 −
e−E0/kBTz

�
nz=0

Nz

e−Enz
/kBTz

, �12�

which can be solved numerically for Tz after determining �z
from the sharp sideband edge on the far side of the carrier,

resulting in a line-shape-independent measure of the longitu-
dinal temperature.

Ideally, the transverse temperature Tr would be deter-
mined with the same method by measuring the transverse
sidebands at �=�r, but their amplitude is suppressed since
the probe is carefully aligned with the lattice axis. The trans-
verse sidebands can be measured by misaligning the probe
beam. An independent measurement of the trap frequency
can be obtained by parametric heating. Both methods con-
firm a typical transverse trap frequency of �r�450 Hz. A
combination of a longitudinal sideband spectrum with a
transverse trap frequency measurement allows a complete
characterization of the trap parameters including depth U0
and waist w0 via Eq. �4�. This calibration, together with a fit
of the longitudinal sideband shape with Eq. �11�, then lets us
extract information about Tr from the same data that gives �z
and Tz.

Spectroscopic line shapes of the blue sideband are dis-
played in Fig. 3�a�, along with fits of Eq. �11�, for varying
Rabi pulse time in the range of 0.5–32 ms. The longitudinal
temperature was determined by the ratio of red and blue
sideband areas �Eq. �12�� as Tz=3 �K and time-of-flight
�TOF� pictures show a unity aspect ratio indicating a well
thermalized sample with Tz=Tr. Figure 3�b� shows the trans-
verse temperature resulting from the fits in �a� and the dashed
line indicates Tz; the solid line connects the first and last
points.

The data show an apparent increase in transverse tempera-
ture with increasing probe time. A similar measurement with
constant pulse time and varying probe power shows no such
dependence. In combination with the TOF measurements, we
conclude that the transverse temperature is not influenced by
the probe laser and that the magnitude of the Rabi frequency
does not influence the sideband shape except by broadening
the underlying Lorentzian. The time-dependent data suggest
that atoms with a broader range of velocities interact with the
probe laser than suggested by the steady-state eigenenergy
picture that gives rise to Eq. �10�. With probe pulse times on
the order of the inverse trap frequency, a snapshot of the
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FIG. 3. �Color online� �a� Blue sideband as a function of probe
time. The solid curves are fits of Eq. �11� to the data for fixed Tz

=3 �K determined from the cross-section ratio in Eq. �12�. �b�
Apparent transverse temperature as determined from the fits in �a�
as a function of probe time on a double-logarithmic plot. The ap-
parent transverse temperature increases with probe time �see text�.
On the other hand, TOF data indicates constant Tr=Tz �dashed line�.
The solid line connects the first and last point giving an increase in
apparent transverse temperature as �1.5 �K per decade of probe
time.
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atomic distribution can be obtained and the sideband shapes
derived above become more applicable.

V. EFFECT OF RADIAL MOTION ON THE CARRIER
TRANSITION

The longitudinal sideband shape is strongly modified by
the anharmonic corrections to the potential. In contrast we
expect the carrier to be insensitive to motional effects since
carrier spectroscopy can be done at linewidths of �2 Hz,
corresponding to spectroscopic quality factors of 21014

�6�, which is well in the resolved sideband regime.
The carrier Rabi frequency for a harmonically trapped

particle in state �n� probed with a spectroscopy beam of

wave vector kp=2� /�pk̂p for probe wavelength �p is given
by

�n = �0n�eikp·x�n� = �0 �
i=x,y,z

e−�i
2/2Lni

��i
2� , �13�

determined by the Lamb-Dicke parameters �i�kp
i ai /	2,

with oscillator length 2�ai=	h / �m�i� for trap axis i and La-
guerre polynomial Lni

. In this way, the Rabi frequency is
determined by the spatial extent of the motional wave func-
tion with respect to the probe wavelength. For a probe that is
perfectly aligned with the lattice axis, the only nonzero
Lamb-Dicke parameter will be �z. In this case, �z

2=�rec
p /�z,

where �rec
p �4.7 kHz is the probe recoil frequency.

We ignore corrections to Eq. �13� from perturbed har-
monic oscillator states, since both the z4 and r2z2 terms in
Eq. �2� produce wave function coefficients suppressed by
�rec / �2�z�. Although the r2z2 coupling modifies �z, the cor-
rection to its value scales as nr

	�rec�r /�z and is negligible for
the relevant temperatures. In the following, we will assume
harmonic oscillator states and energies and derive carrier line
shapes and Rabi flopping accordingly.

Although we can ignore the trap shape except for the
harmonic confinement, the Rabi frequency expression still
assumes that the particle is probed by a plane wave without
transverse profile. Each wave-vector component of the probe
beam contributes to the Rabi frequency according to its Fou-
rier coefficient allowing us to estimate the effect of a shaped
probe beam. Over the extent of a trap site the probe beam
shape can be approximated as a plane wave along the mean
probe direction with a transverse shape function describing
its intensity profile. Although the probe beam is carefully
aligned with the lattice axis, residual misalignment or aber-
rations might produce a net mismatch between lattice axis
k=kẑ and probe axis. Since the transverse trap is isotropic,
we choose a small net misalignment angle �� along x̂, such
that kp�kp�ẑ+��x̂�. The transverse extent of the probe
beam is large and can be approximated by a cylindrically
symmetric function �with respect to the net probe direction�
of waist wp�w0. The corresponding Rabi frequency is

�nx,nz
= �0n�eikp·x�1 + O�ax

2/wp
2���n�

� �0n�eikp·x�n�

= �0e−�x
2/2e−�z

2/2Lnx
��x

2�Lnz
��z

2� . �14�

Thus, the transverse shape of a cylindrically symmetric
probe beam with large cross section cannot influence the
spectroscopy �ax

2 /wp
2 �10−4 for our experiment�. The Lamb-

Dicke parameters are

�z = 1/�p
	h/�2m�z� , �15�

�x = ��/�p
	h/�2m�r� . �16�

Since �r��z, even a small amount of effective misalignment
will cause significant transverse contributions to the carrier
line shape. For our trap frequencies, �z�0.24, and �x���
3.2. In conclusion, the main correction to the carrier Rabi
frequency comes from an effective misalignment angle in the
transverse direction, while the broad transverse profile can be
ignored. This misalignment introduces information about the
transverse motional state distribution and thus the transverse
temperature into the carrier line shape. We will present ex-
perimental evidence for a typical effective misalignment
angle ���10 mrad.

The carrier line shape for Rabi spectroscopy can be un-
derstood as follows. We can neglect spontaneous emission
and probe laser decoherence even at Rabi spectroscopy times
approaching 1 s �6�. The lattice lifetime has also been mea-
sured as �1 s and does not introduce decoherence on the
typical Rabi pulse times of 80 ms. In this regime, we can
neglect any decoherence rates in the system and describe the
population dynamics in a fully coherent way. The excited
state probability for motional state �n�, detuning �, and pulse
time t is

pe�n,�,t� =
�nx,nz

2

�nx,nz

2 + �2sin2��t	�nx,nz

2 + �2� . �17�

The ensemble-averaged excited state population is then
given by

Pe��,t� = �
nx,nz

qnx
�Tr�qnz

�Tz�pe�n,�,t� �18�

for normalized Boltzmann weights qnx
�qnz

� corresponding to
transverse �longitudinal� temperature Tr �Tz�:

qnx
= �1 − zx�zx

nx, zx � exp�− h�r/�kBTr�� , �19�

qnz
= �1 − zz�zz

nz, zz � exp�− h�z/�kBTz�� . �20�

We are interested in two scenarios: �a� Change the pulse time
t and measure Rabi flopping at zero detuning. �b� Change
detuning � by scanning the spectroscopy laser across the
carrier resonance and measure the Rabi line shape. Both
cases are covered by Eq. �18� and we expect a response as a
coherent superposition of slightly different Rabi frequencies.

For low temperatures, we only have to consider atoms in
the lowest longitudinal state nz=0 and for small misalign-
ments, the Rabi frequency can be expanded in �x

2. These two
simplifications allow finding an analytical expression for
case �a�. Here, the excited state population can be approxi-
mated as
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Pe�t� � �
nx=0

�

�1 − zx�zx
nx sin2���1 − �x

2nx�/2�

=
1

2
+

1 − zx

2

zx cos���1 − �x
2�� − cos �

1 + zx
2 − 2zx cos���x

2�
, �21�

with �=2�t�0e−�x
2/2e−�z

2/2. Equation �21� reduces to Pe�t�
=sin2 � /2 for zero misalignment and exhibits dephasing to
1/2 by introducing different frequency components via
�x

2���� and amplifying their contribution by increasing
zx�Tr�. For case �b�, the sum can be evaluated in a similar
manner. The resulting expression does not provide much fur-
ther insight and we omit it here.

Experimentally, the excited state fraction is obtained by
measuring the number of atoms left in the ground state after
the spectroscopy pulse, then repumping the excited atoms
back to the ground state and measuring their number. The
repumping back to the ground state has efficiency ��1 and
can vary from day to day. To obtain an excited state prob-
ability independent of a fluctuating overall number of atoms,
the fraction of excited state over excited plus ground state
counts is used. This normalization results in a Rabi flopping
trace that dephases to � / ��+1� instead of 1/2. Note that on
the experimental time scale, the dephasing is a coherent pro-
cess dominated by an inhomogeneous distribution of Rabi
frequencies via effective probe misalignment and tempera-
ture.

We investigated the effect of inhomogeneous excitation
by mapping out the Rabi flopping and line shapes under
different experimental conditions such as sample tempera-
ture, misalignment angle, and probe laser intensity. In Fig.
4�a� we show data for the excited state fraction as a function
of probe pulse time for two different temperatures. For the
hot sample, Rabi oscillations quickly decay after only two to
three cycles. For the cold sample, the Rabi oscillations have
a significantly higher visibility and are observable for about
ten cycles. This behavior was reproduced for a wide range of
probe laser intensities. In Fig. 4�b�, the Rabi oscillations
dephase faster when the effective misalignment angle �� is
increased by misaligning the probe with respect to the lattice
axis. From fits of Eq. �21� we determine a misalignment
angle of ��=10 mrad for the well-aligned case relevant to
clock operation.

Each data point in Fig. 4 is determined by setting a spe-
cific probe pulse time and then scanning the probe laser de-
tuning across the carrier transition to obtain a spectrum such
as the one shown in Fig. 5 for a probe time of 1.7 ms. The
maximum excited state fraction at zero laser detuning
��0.65 here� would then give the corresponding data point
in Fig. 4 for the respective probe time.

For small ��, the data shown in Figs. 4 and 5 are well
reproduced by the simplified model in Eq. �21�. This model
allows us to determine the transverse temperature as 1 �K
for the cooled case, and 3 �K for the uncooled case, with a
precision of about 0.2 �K, agreeing well with the corre-
sponding longitudinal temperatures. In the misalignment
model, both angle and transverse temperature produce a
similar effect so that their covariance is significant. The

transverse temperature data have been confirmed by the
unity aspect ratio of the atomic cloud in time-of-flight expan-
sion. Accurate determination of the effective misalignment is
difficult, introducing larger uncertainty in the radial tempera-
ture measurement. However, fitting both Rabi flopping at
zero detuning and Rabi line shapes across a wide range of
parameters gives consistent results.

We characterize the amount of inhomogeneity in the sys-
tem by the ratio of rms spread in Rabi frequency �� over

the site’s mean Rabi frequency �̄ given by

�̄ = �
nx,nz

q�nx�q�nz��nx,nz
, �22�

��2 = �
nx,nz

q�nx�q�nz��nx,nz

2 − �̄2. �23�

In Fig. 6 we show how the ratio �� /�̄ changes with sample
temperature and misalignment angle. For the temperatures
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FIG. 4. �Color online� Effect of inhomogeneity on Rabi oscilla-
tions. �a� The excited state fraction as a function of pulse time is
shown for sample temperatures of 1 �K �circles� and 3 �K �open
squares� with fits of Eq. �21�, giving bare Rabi frequencies �0

=59 Hz and 76 Hz, respectively. Both fits result in a misalignment
angle ���10 mrad. �b� The excited state fraction as a function of
pulse time at 3 �K is shown for increased misalignment angles and
probe powers. The open circles show oscillations when the probe
beam is slightly misaligned. The fit gives �0=55 Hz and ��
�10 mrad. The open squares show data for increased misalign-
ment and the same probe power giving �0=54 Hz and ��
�17 mrad. Note that the small misalignment approximation used
to derive Eq. �21� starts to break down, resulting in a worse fit.
Finally, the triangles show data for a large misalignment angle taken
with increased power. Although the fit looks much worse, the re-
sulting ���40 mrad agrees well with a geometrical estimate
based on the experimental procedure for misaligning the beam.
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and effective misalignment angles, we find typical values of
�� /�̄ in the range of 0.05–0.4.

An additional source of Rabi frequency inhomogeneity
between different lattice sites is the imperfect transmissivity
of the lattice reflector for the probe wavelength introducing a
standing wave component in the probe beam. The wave-
length mismatch between the lattice and probe beams leads
to a modulation of the residual probe standing wave intensity
between different lattice sites and, therefore, different Rabi
frequencies. However, this effect is different from the exci-
tation induced inhomogeneity discussed above since it is ho-
mogeneous within each site. The mirror reflectivity at the

probe wavelength was measured as 0.5% leading to a �� /�̄
contribution of 0.07. In the following section, we will use the
inhomogeneity information obtained from spectroscopy to
estimate inhomogeneity-induced clock frequency shifts re-
lated to in-site Rabi frequency variation. The Rabi flopping
data thus overestimate the in-site Rabi frequency variation
slightly.

VI. INHOMOGENEITY-INDUCED DENSITY SHIFTS

For 87Sr at �K temperatures, interatomic collisions are
suppressed due to Fermi statistics, which exclude collisions
between identical fermions resulting from even partial
waves. However, using 87Sr a nonzero density shift to the
transition frequency was recently measured �10�. At ultracold
temperatures p-wave and higher-order odd partial wave col-
lisions are frozen out and any remaining s-wave interactions
should be suppressed. As discussed in the preceding sections,
the trapping potential will result in an inhomogeneous exci-
tation process unless all atoms are in the same motional
quantum state. Since they are fermions that have been pre-
pared in the same electronic and nuclear states, this is in
principle impossible and there will always be an inhomoge-
neous excitation unless a lattice with at most one particle per
site is realized. The inhomogeneous excitation changes the
quantum statistics of the trapped atomic sample. This change
in statistics leads to distinguishable fermions even for �K
temperatures and gives rise to s-wave collisions and there-
fore a density shift. However, we will show that, under our
experimental conditions small density-related frequency
shifts can be minimized by choosing an average excitation
fraction close to 50%.

The mean-field energy shifts in the two state system con-
sisting of ground and excited clock state �g� and �e� can be
expressed as �26�

�Eg =
4��2

m
�Geg

�2�aeg�e + Ggg
�2�agg�g� , �24�

�Ee =
4��2

m
�Gee

�2�aee�e + Geg
�2�aeg�g� , �25�

where Gij
�2� �aij� is the two-body correlation function �scatter-

ing length� between states i and j, and � j is the partial density
of state j in a trap site. The above expression is applicable
when the de Broglie wavelength of the scattering particles is
large compared to their scattering length.

The clock frequency shift can be calculated from the dif-
ferential energy shift �Ee−�Eg. For identical fermions Gii

�2�

vanishes. Its bosonic equivalent equals 2 and for degenerate
bosons it becomes unity. The clock frequency shift �� in the
two-state fermionic system is given by

h�� =
4��2

m
aegGeg

�2���g − �e� . �26�

We can estimate the magnitude of this shift by considering
the evolution of two representative atoms during the Rabi
pulse. These two atoms will follow slightly different trajec-
tories on the Bloch sphere since their Rabi frequencies differ
through the inhomogeneities derived in the previous sections
causing the energy difference between the clock states to
change during the clock pulse.

Under the clock pulse, the electronic state of particle j
evolves with the time-dependent Hamiltonian

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
x
ci

te
d

st
at

e
fr

ac
ti

on

−1.5 −1 −0.5 0 0.5 1 1.5 2

Detuning (kHz)

FIG. 5. �Color online� Excitation fraction as a function of probe
laser detuning for a probe time of 1.7 ms. The solid curve is a fit of
Eq. �18� with the temperature as the only free parameter fixing ��
at 10 mrad. The fit gives Tz=Tr= �2.1�0.2� �K consistent with the
sideband method and time-of-flight expansion.
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Hj�t� = −
h

2
�� j	x + �� − ���t��	z� , �27�

where 	x �	z� is the first �third� Pauli matrix, � j is the Rabi
frequency for particle j, and � is the probe laser detuning
from the bare atomic resonance. We assume that all particles
are prepared in the excited electronic state �e� and use a
discretized version of the Schrödinger equation to propagate
the wave function coefficients over a small time step �t:

�� j�t + �t�� = �I2 − i�tHj�t�/���� j�t�� , �28�

where I2 is the 22 identity matrix. After each time step �t,
the density shift ���t� is recalculated for the updated wave
functions �� j�t���
 j�t��e�+� j�t��g� �j=1,2� according to
Eq. �26�. The antisymmetrized two-body correlation function
between the two-level fermions 1 and 2 is �10�

Geg
�2� = 1 − �
1�t�
2

��t� + �1�t��2
��t��2. �29�

A more detailed many-body model relating G�2� to transitions
to motional singlet and triplet states in the wave function is
presented in Ref. �13�.

If we consider a “mean particle” �particle 1� evolving

with Rabi frequency �̄ and a typical perturbing particle �par-

ticle 2� evolving with �̄+��, we can define an approximate
associated density shift as

���t� = ��0�1 − �
1
2
� + �1�2

��2��1 − 2�
1�2� , �30�

where ��0�2��0aeg /m, with average atom density �0. Here,
the two-body correlation function is multiplied by the inver-
sion of the mean particle following a trajectory on the Bloch
sphere. Due to the background interaction with the other par-
ticles, a mean-field energy builds up during the pulse causing
the detuning and, thus, the effective Rabi frequency to
change dynamically. Many collisions occur during the Rabi
time since the rate of collision attempts is given by the in-
verse of the transverse trap frequency 1 /�r�2 ms and the
typical Rabi time for clock operation is 80 ms. This separa-
tion of time scales makes the mean-field treatment appli-
cable. For pulse times �1 /�r, the above description of the
excitation process would have to be modified to include
wave packets of vibrational states. For these short pulse
times, no collisions can occur which can be explained by a
local picture. The atoms are effectively confined to a volume
determined by their velocity and the pulse length. If this
volume is significantly smaller than the trap size, the local
excitation process is very homogeneous. No collisions can
occur since the atoms cannot travel far enough to encounter
collision partners that have been excited in a slightly differ-
ent way.

The clock transition frequency is measured by locking the
spectroscopy laser to points of equal height on the transition
line shape. To model the experimental procedure, we include
the mean-field density shift as a time-dependent detuning in
the wave function coefficients via Eq. �28�. We calculate the
line shape for a pulse time corresponding to a � pulse �on
resonance for the mean particle� as a function of the inho-

mogeneity parameter �� /�̄ as shown in Fig. 7�a�. The mea-
sured clock shift can be visualized by comparing two contour

lines of equal excited state fraction pe. The spectroscopy la-
ser is locked to their average detuning which changes with
both the inhomogeneity and the pair of contours chosen. The
final frequency offset is negative for pg�0.52, vanishes at
pg�0.52, and becomes positive for pg�0.52. The resulting
frequency shift �or locking error� with respect to the bare
atomic transition in units of ��0 is shown in Fig. 7�b� for the

experimentally relevant range of �� /�̄. The frequency shift
is shown with a negative sign to recreate the behavior for a
negative scattering length aeg.

In using Eq. �29� and detecting only the mean particle
excitation fraction, we have chosen a maximally asymmetric
model where the representative particle is only perturbed by
the background particles but does not act back on the per-
turbing particles. A maximally symmetric model can be de-

rived by choosing representative Rabi frequencies �̄���
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FIG. 7. �Color online� �a� Contour plot of the ground state frac-
tion pg=1− �
1�2 for the mean particle as a function of detuning in

units of �̄ and inhomogeneity parameter �� /�̄ after a � pulse.
The solid curves are contours of equal pg visualizing the locking
points of the spectroscopy laser. Note that the contours for locking
close to the full width at half maximum �FWHM� are insensitive to
the inhomogeneity parameter. �b� The solid lines show the clock
frequency shift �or locking error� with respect to the bare atomic
transition in units of ��0=2�aeg�0 /m as a function of final ground
state fraction pg=1− �
1�2 after the pulse for the relevant range of

�� /�̄. A negative sign was included in the shift to recreate the
experimental behavior for a negative scattering length. The shift
crosses zero close to pg=0.5 and varies quadratically both with
inhomogeneity parameter and ground state fraction. The shaded ar-
eas indicate the change in the solid curve when the �-pulse condi-
tion is allowed to vary by 5%.
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and using the mean of both excited state fractions in Eq. �29�
as well as in the detection of the line shape. In this two-
particle model, there is no preferred particle and the resulting
line shape exhibits loss of contrast as the inhomogeneity
grows. We find that the density shift calculated from such
line shapes shows a very similar dependence on the ground
state fraction and its magnitude is the same.

To extract information about aeg from experimental data
for small inhomogeneity, we fit the numerical clock shift data
with a simple polynomial. The frequency shift increases qua-

dratically with �� /�̄, is quadratic in pg, and changes sign
close to pg=0.5. Fitting the functional form

A�pg − B��pg − C����/�̄�2 �31�

to numerical data obtained after a �-pulse excitation, as in

Fig. 7�b� for �� /�̄� �0,0.4�, results in A=−0.410�3�, B
=0.528�1�, and C=−0.443�7� with rms error 310−4. To a
good approximation, we can thus use the formula

��� � − ��0���/�̄�20.41�pg − 0.53��pg + 0.44� �32�

to calculate the density shift for small inhomogeneity mea-
sured by locking the spectroscopy laser to points of equal
ground state fraction after a � pulse �defined on resonance
for the mean particle� for particles initially prepared in the
excited electronic state. However, if the �-pulse condition is
allowed to vary by only 5%, the density shift curve changes
as indicated by the shaded areas in Fig. 7�b�. Since we can-
not exclude such variation over the course of a day, the zero
crossing is not well defined and obtains an uncertainty ac-
cording to how well the probe intensity is stabilized on long
time scales. In the following, we will use the standard error
given by fitting Eq. �32� to experimental data using weighted
least squares to indicate experimental uncertainty and add an
estimated relative amplitude error of 30% in quadrature to
account for the �-pulse condition uncertainty.

The density shift data from Campbell et al. �10� are
shown in Fig. 8 along with fits based on Eq. �32� adjusting
the amplitude of the polynomial in pg as the only fit param-

eter. For temperatures T1=1 �K and T2=3 �K, we find fit
amplitudes of ���T1�=−2.3�0.7 Hz and ���T2�=
−12.1�0.9 Hz, respectively. Although we can exclude
p-wave scattering contributions �10�, the corresponding val-
ues of aeg are larger than the unitarity limit given by aeg

=�T /2�, with thermal wavelength �T=h /	2�mkB�T+Tzp�
and zero-point temperature Tzp�3.5 �K corresponding to
the ground state energy of the trapping potential. On the
other hand, in the unitarity limit, the ratio of both shift coef-
ficients scales as

����/�̄�1

���/�̄�2

�2	T2 + Tzp

T1 + Tzp
� 0.14, �33�

which agrees with the ratio of measured shift coefficients

���T1� /���T2�=0.2�1� for ��� /�̄�1=0.05 and ��� /�̄�2
=0.14 at ��=10 mrad.

The current two-particle model describes the qualitative
behavior of the experimental data well and the scaling fac-
tors derived agree with the unitarity limit, but cannot explain
the large density shift quantitatively. This discrepancy prob-
ably stems from applying Eq. �26� in a dynamic context.
Even though there are many collisions during a typical Rabi
pulse time, Eq. �26� describes the mean-field differential en-
ergy shift in a two-level system in steady state and cannot
model the line shape evolution during the Rabi pulse accu-
rately. A full many-body model is expected to improve our
understanding of the density shift considerably �13�. Even
with a better model, extracting reliable information about the
scattering lengths from density shift data remains a challeng-
ing problem.

VII. CONCLUSION

In this paper we have investigated the inhomogeneous
excitation introduced by the transverse degrees of freedom
for Rabi spectroscopy in a 1D optical lattice. An analytical
model for how the longitudinal sidebands are influenced by
the finite temperature of the atomic sample is developed and
is used to allow us to extract temperatures from sideband
scans. Furthermore, by modeling and fitting Rabi oscillations
and line shapes the degree of inhomogeneity introduced by
transverse temperature and an effective probe beam mis-
alignment can be measured. The inhomogeneity directly af-
fects the spectroscopic process and causes otherwise identi-
cal ultracold fermions to become distinguishable during the
excitation process. This effect is modeled by a time-
dependent two-particle correlation function, giving rise to
density-dependent clock frequency shifts. By determining
the temperature and inhomogeneity of the atomic sample as
described here and by controlling the excitation fraction, this
density shift can now be measured, controlled, and zeroed.
We have presented a simple two-particle model that models
the density shift data qualitatively.
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APPENDIX: SIDEBAND LINE-SHAPE DERIVATION

The derivation in this appendix generalizes arguments
presented by Boyd �15�, Le Targat �27�, and Ludlow �16� to
include longitudinal anharmonicity and population in higher
bands. An atom’s radial motional state �nx ,ny� shifts the side-
band transition frequency via the r2z2 coupling term in the
site potential. For a fixed longitudinal quantum number nz
and detuning �, only atoms with specific longitudinal quan-
tum numbers �nx ,ny� will be resonant with the probe laser.
This resonance condition is given by the longitudinal energy
gap � �Eq. �8��. The sideband amplitude at this detuning is
determined by the Boltzmann factors for the corresponding
quantum numbers. The single-nz sideband line shape is a
superposition of individual atomic transitions between states
�i�= �nx ,ny� and �f�= �nx ,ny ,nz+1� weighted by the Boltz-
mann distribution. The individual atomic transition is power
broadened with base width �, given by the carrier Rabi fre-
quency, since the natural transition linewidth is negligible.
We also neglect higher-order contributions to the sideband
where the change in longitudinal quantum number is accom-
panied by a change in the radial quantum numbers since their
amplitude is suppressed by an additional factor of �x

2. We
find

	blue
nz ��� � �

nx,ny

zr
nxzr

ny

1 +
4

�2 �� − ��nz��2

, �A1�

where zr=exp�−h�r / �kBTr�� is the Boltzmann factor associ-
ated with transverse state nx �ny� and transverse temperature
Tr. By introducing a radial quantum number nr�nx+ny and
corresponding two-dimensional degeneracy factor �nr+1�,
we can reduce the summation to one dimension:

	blue
nz ��� � �

nr

�nr + 1�zr
nr+1

1 +
4

�2�� − �̃�nz� + �rec
�r

�z
�nr + 1��2 ,

�A2�

with base longitudinal gap �̃�nz���z−�rec�nz+1�.

For detunings � /��nz��1 on the shallow sideband slope
facing the carrier, the sum’s main term will be associated
with the quantum number nr that minimizes the denominator
leading to a relation between detuning and quantum number:

nr + 1 � −
�z

�rec�r
�� − �̃�nz�� . �A3�

We approximate the sum by this main term and find

	blue
nz ��� � �1 −

�

�̃�nz�
�e−
�1−�/�̃�nz�����̃�nz� − �� , �A4�

with 
���̃�nz� /�rec��h�z /kBTr�. We ensure the applicability
of the approximation by cutting off the line shape at �
= �̃�nz� with the Heaviside function �. For the relevant pa-
rameter ranges, the line shape can be approximately area
normalized to three significant figures with a prefactor

2 / �̃�nz�.

The longitudinal trap anharmonicity places each of these
single-band component line shapes at slightly different de-
tunings. We find the final blue sideband line shape as a
Boltzmann-weighted superposition of area-normalized com-
ponents:

	blue��� = 
�
nz

Nz

e−Enz
/kBTz�−1

�
nz

Nz

e−Enz
/kBTz	blue

nz ��� ,

Enz
/h = �z
nz +

1

2
� −

�rec

2
�nz

2 + nz + 1� . �A5�

Here, the quartic approximation to the longitudinal potential
reproduces the lowest energies and gaps to within a few per-
cent. A better approximation to the energy En of the nth
longitudinal state is given by En / �h�rec�= �an�q�
+bn+1�q�� /2+2q, where an and bn+1 are the characteristic
values of the Mathieu equation bounding its nth stability
region at parameter value q �see Ref. �28�, for example�.
Here q has to be optimized numerically—starting from the
harmonic approximation q0=U0 / �4h�rec�—such that the low-
est gap �E1−E0� /h��rec�a1�q�−a0�q�� is equal to the mea-
sured longitudinal trap frequency.
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