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We have carried out calculations towards the goal of reducing the inaccuracy of the Sr optical atomic clock
to 1�10−17 and below. In particular, we focused on ac polarizabilities of the 5s2 1S0 and 5s5p 3P0

o clock states
that are important for reducing the uncertainty of black-body radiation-induced frequency shifts for the 1S0-3P0

o

clock transition. Four low-lying even-parity states have been identified, whose total contribution to the static
polarizability of the 3P0

o clock state is at the level of 90%. We show that if the contribution of these states is
experimentally known with 0.1% accuracy, the same accuracy can be achieved for the total polarizability of the
3P0

o state. The corresponding uncertainty for the blackbody shift at a fixed room temperature will be below
1�10−17. The calculations are confirmed by a number of experimental measurements on various Sr properties.
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I. INTRODUCTION

The use of optical lattice-confined neutral atoms for
achieving a new level of time-keeping precision and accu-
racy has become widely practiced �see, e.g., Refs. �1–9��. In
this scheme, ultracold atoms are confined in an optical lattice
to eliminate motion-related systematic frequency shifts. The
lattice laser wavelength is selected in such a way that the
perturbation to the clock frequency arising from ac Stark
shifts induced by the lattice laser for both clock states ex-
actly cancel �10�.

An important indicator of clock performance is provided
by the Allan deviation characterizing the fractional frequency
instability �. For a signal-to-noise ratio given by the funda-
mental quantum projection noise, the instability can be writ-
ten as

���� �
1

Q

�t
�N�

. �1�

Here Q is the resonance quality factor defined as Q=� /��,
where � is the transition frequency and �� is the linewidth.
N is the total number of particles measured in a coherent
time period t, and � is the total averaging time. According to
Eq. �1�, atoms with the highest quality factors Q are pre-
ferred for a new generation of time and frequency standards.

The highest Q’s are currently obtained for a narrow tran-
sition in the optical domain �11�. In particular, the highly
forbidden 1S0→ 3P0

o transitions in divalent atoms offer excel-
lent possibilities for attaining a new level of precision and
accuracy for time keeping. One of the most promising can-
didates is 87Sr for which ���1.2 mHz �12–14�, yielding a
potential Q�1017. In a recent paper �8�, a systematic uncer-
tainty evaluation for a neutral Sr optical atomic standard was
reported at the 10−16 fractional level, surpassing the best

evaluations of Cs fountain primary standards. The dominant
systematic frequency correction and uncertainty in that work
arose from the room temperature black-body radiation
�BBR�. The fractional frequency shift ���BBR /�0� caused by
the BBR is proportional to the differential static polarizabil-
ity of the two clock states. For the 5s2 1S0→5s5p 3P0

o tran-
sition in Sr, the BBR shift was calculated in Ref. �15� to be
equal to 55.0�7��10−16. The 1% uncertainty for the BBR
shift originates mostly from insufficient knowledge of the
static polarizability of the 5s5p 3P0

o state, with the most ac-
curate calculation provided in Ref. �15�. To further improve
the Sr accuracy, it is clear that a better understanding of the
Sr properties is needed to give a more accurate determination
of the BBR shift. The purpose of this paper is to outline a
clear path to achieve this goal. To improve the clock accu-
racy significantly, it is equally important that a well-
characterized homogeneous BBR environment surrounds the
Sr atoms in future experiments.

The improvement of the Sr clock accuracy requires a
more accurate determination of the differential static polar-
izability of the 5s2 1S0 and 5s5p 3P0

o states. Note that the
static polarizability of the ground 5s2 1S0 state is known at a
sufficiently low uncertainty 	0.1% �15�. This low uncer-
tainty is made possible by a good knowledge of the matrix
element �
5s2 1S0�d�5s5p 1P1

o�� �16�, where the intermediate
state 5s5p 1P1

o contributes to the polarizability of the 1S0
state at the dominant level of 97%. Consequently, the out-
standing challenge is to reduce the uncertainty of the polar-
izability of the 3P0

o state to a similar level. Even sophisticated
modern relativistic methods of atomic calculations cannot
provide such accuracy. For this reason, a solution to this
problem must combine theoretical and experimental ap-
proaches. We show that four specific intermediate states have
a combined contribution to the total static polarizability of
the 5s5p 3P0

o state at the level of 90%. When the contribu-
tions from these four states are determined from experimen-
tal data at 0.1% accuracy and the contributions of all other
discrete and continuum states are known at the level of
1–2 % from calculations, then the final 0.1% uncertainty for
the polarizability of the 5s5p 3P0

o state will be achieved. This
strategy is the focus of this paper.
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The paper is organized as follows. In Sec. II we briefly
describe the method of calculations. In particular, we discuss
the construction of basis sets and solving the multiparticle
Schrödinger equation. In Sec. III we discuss the black-body
radiation effect and present the results of calculations for the
low-lying energy levels, ac polarizabilities, transition rates,
and oscillator strengths, and we analyze the results obtained.
Section IV contains concluding remarks. Atomic units ��
= �e�=m=1� are used throughout the paper.

II. METHOD OF CALCULATIONS

The most complex problem in precise atomic calculations
is associated with the necessity to account for three types of
electron correlations, i.e., valence-valence, core-valence, and
core-core correlations. The former are usually too strong to
be treated perturbatively, while the other two types of corre-
lations cannot be treated effectively with nonperturbative
techniques, such as the multiconfigurational Hartree-Fock
method �17� or the configuration interaction �CI� method
�18,19�.

Therefore, it is natural to combine the many-body pertur-
bation theory �MBPT� with one of the nonperturbative meth-
ods. In Ref. �20�, it was suggested to use MBPT in order to
construct an effective Hamiltonian for valence electrons. Af-
ter that, the multiparticle Schrödinger equation for valence
electrons is solved within the CI framework. Doing so allows
us to find the low-lying energy levels. Following the earlier
works, we refer to this approach as the CI+MBPT formal-
ism.

In order to calculate other atomic observables, one has to
construct the corresponding effective operators for valence
electrons �21–23�. These operators effectively account for
the core-valence and core-core correlations. In particular, to
obtain an effective electric-dipole operator, we solve
random-phase approximation �RPA� equations, thus sum-
ming a certain sequence of many-body diagrams to all orders
of MBPT �21,24,25�. The RPA describes shielding of an ex-
ternally applied field by core electrons. Small corrections due
to, for instance, normalization and structural radiation are
omitted.

In the CI+MBPT approach, the energies and wave func-
tions are determined from the time-independent Schrödinger
equation

Heff�En�	n = En	n,

where the effective Hamiltonian is defined as

Heff�E� = HFC + 
�E� .

Here HFC is the Hamiltonian in the frozen core approxima-
tion and 
 is the energy-dependent correction, which takes
into account virtual core excitations. The operator 
 com-
pletely accounts for the second-order perturbation theory
over residual Coulomb interactions. Determination of the
second-order corrections requires calculation of one- and
two-electron diagrams. The one-electron diagrams describe
an attraction of a valence electron by a �self-� induced core
polarization. The two-electron diagrams are specific for at-
oms with several valence electrons. The number of the two-

electron diagrams is very large and their calculations are ex-
tremely time-consuming. In the higher orders the calculation
of two-electron diagrams becomes practically impossible.
Hence, it is more promising to account for the high orders of
the MBPT indirectly. One such method was suggested in
Ref. �26�, where it was shown that a proper choice of the
optimum initial approximation for the effective Hamiltonian
can substantially improve the agreement between calculated
and experimental spectra of many-electron atoms.

We consider Sr as a two-electron atom with the core
�1s , . . . ,4p6�. The one-electron basis set for Sr includes
1s-14s, 2p-14p, 3d-13d, 4f-13f , and 5g-9g orbitals, where
the core- and 5s-7s, 5p-7p, and 4d-6d orbitals are Dirac-
Hartree-Fock �DHF� ones and all the rest are the virtual or-
bitals. The orbitals 1s-5s were constructed by solving the
DHF equations in the VN approximation, i.e., the core and
the 5s orbitals were obtained from the DHF equations for a
neutral atom �we used the DHF computer code �27��. The
6s-7s, 5p-7p, and 4d-6d orbitals were obtained in the VN−1

approximation. That is, the 1s-5s orbitals were “frozen,” one
electron was transferred from the valence 5s shell into one of
the orbitals specified above, and the corresponding one-
electron wave function was found by solving the DHF equa-
tions. We determined virtual orbitals using a recurrent proce-
dure similar to Ref. �28� and described in detail in Refs.
�22,23�.

Configuration-interaction states were formed using these
one-particle basis sets. It is worth emphasizing that the em-
ployed basis set was sufficiently large to obtain numerically
converged CI results. An extended basis set, used at the stage
of MBPT calculations, included 1s-21s, 2p-21p, 3d-20d,
4f-17f , and 5g-13g orbitals.

III. RESULTS AND DISCUSSION

A. Calculation of energies

Solving the multiparticle Schrödinger equation we find
low-lying energy levels and their respective wave functions.
In Table I we present the calculated energies of the low-lying
states for Sr and compare them with experimental data. As is
seen from the table we focus mainly on energy levels with
J=1. This is due to the fact that we are interested in calcu-
lation of the electric dipole-dominated ac polarizabilities for
the clock states with total angular momentum J=0. Only
intermediate states with J=1 contribute to these polarizabil-
ities. The energy level diagram of these states is given in Fig.
1. The energy levels were obtained in the framework of the
conventional configuration-interaction method as well as us-
ing the formalism of CI combined with the many-body per-
turbation theory. Using the CI method alone, the agreement
of the calculated and experimental energies is at the level of
5–10 %. The combination of CI and MBPT improves the
accuracy by approximately an order of magnitude.

B. Black-body radiation

It is well known that BBR-related clock frequency shifts
arise from perturbations of atomic energy levels by weakly
oscillating thermal radiation. For the 1S0→ 3P0

o clock transi-
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tion, both atomic states involved are perturbed. Thus, the net
BBR effect is the difference of the individual BBR shifts for
the two states, ��BBR=�EBBR�3P0

o�−�EBBR�1S0�. The expres-
sion for the �EBBR�g� of a state g can be given by the fol-
lowing formula �15�:

�EBBR�g� = −
2

15
���3T4�Eg

�0��1 + �� , �2�

where ��1 /137 is the fine structure constant, T is the char-
acteristic temperature of the BBR environment, �Eg

�0� is the
electric-dipole static polarizability of state g, and � repre-
sents a “dynamic” fractional correction to the total shift. As
was shown in Ref. �15�, � is negligible for the 1S0 state but
contributes to �EBBR of the 3P0

o state at the 2.7% level. This
is primarily due to the fact that the 3P0

o state has a transition
to a nearby 5s4d 3D1 state in the infrared, as shown in Fig. 1.

The electric dipole static polarizabilities of the 5s2 1S0 and
5s5p 3P0

o states were calculated in Ref. �15� using the same
method, but employing a different basis set than is presented
in this work. The corresponding relative frequency shift of
the clock transition was determined to be ���BBR /�0�
=55.0�7��10−16. The shift uncertainty of ����BBR /�0�
=0.7�10−16 results directly from the 1% uncertainty at-
tained in Ref. �15� for the static polarizability ���3P0

o�0�� of
the 5s5p 3P0

o state. The small size of � ensured that no ad-
ditional uncertainty from the dynamical correction contrib-
uted at this level.

An equally important source of uncertainty in the actual
BBR shift is the knowledge and control of the blackbody
environment at room temperature, T. From Eq. �2�, the shift

uncertainty ���EBBR�g�� originating from the uncertainty in
the BBR environment �T is

���EBBR�g�� = −
8

15
���3T3�Eg

�0��1 + ���T . �3�

At room temperature, measurement of the BBR environment
at the uncertainty level of �T=1 K leads to a fractional fre-
quency shift uncertainty of 7.5�10−17 �8�. The combination
of this uncertainty in quadrature with that resulting from
���3P0

o�0�� yields a 1�10−16 total BBR uncertainty, which
currently limits the accuracy of the Sr optical clock.

To further improve the Sr accuracy, the total BBR uncer-
tainty must be reduced. This requires solving two main prob-
lems: �i� measuring and controlling the black-body environ-
ment to much better than �T=1 K; �ii� determining the
differential static polarizability to better than 1% uncertainty.
The first of these requires additional care and design in the
experimental apparatus. While the temporal stability of the
BBR temperature is more or less straightforward to achieve,
the experimental difficulty originates from achieving spatial
homogeneity of the BBR temperature over various functional
areas of the vacuum chamber housing the atomic sample.
Typically, a large fraction of the 4 sterradians of solid angle
around the atoms consists of glass viewports to accommo-
date the optical access needed for various atomic manipula-
tions �laser cooling and trapping, loading into an optical lat-
tice, state preparation, etc.�. These areas are more difficult to
precisely temperature stabilize than the remainder of the
solid angle typically composed of a metallic vacuum cham-
ber. Experimentally, we observe that different parts of the Sr
vacuum apparatus at JILA can vary by as much as 1 K. Fur-
thermore, at the highest clock accuracy level, it is important
to account for the effect of the transmissivity of glass view-
ports for visible and infrared radiation from the ambient
room on the blackbody environment seen by the atoms.

FIG. 1. �Color online� Low-lying energy levels and transition
wavelengths of atomic Sr, relevant for the determination of polar-
izabilities of the 5s2 1S0 and 5s5p 3P0

o clock states.

TABLE I. Energy differences �in cm−1� with respect to the
ground 5s2 1S0 state for the low-lying energy levels of Sr.

Config. Level CI CI+MBPT Experiment �29�

5s4d 3D1 19 571 18 076 18 159

5s4d 3D2 19 587 18 141 18 219

5s4d 3D3 19 617 18 254 18 319

5s4d 1D2 20 166 19 968 20 150

5s6s 3S1 27 488 29 019 29 039

5s5d 3D1 33 358 35 060 35 007

5p2 3P1 33 511 35 326 35 194

5s7s 3S1 35 695 37 429 37 425

5s6d 3D1 37 985 39 725 39 686

5s5p 3P0
o 12 490 14 241 14 317

5s5p 3P1
o 12 663 14 448 14 504

5s5p 3P2
o 13 022 14 825 14 899

5s5p 1P1
o 20 832 21 469 21 698

5s6p 3P1
o 32 110 33 814 33 868

5s6p 1P1
o 32 487 34 105 34 098

4d5p 3D1
o 36 699 36 189 36 264

4d5p 3P1
o 36 944 37 213 37 303

5s7p 1P1
o 37 275 38 927 38 907

5s7p 3P1
o 37 939 39 377 39 427
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One approach to reducing the uncertainty of the BBR
shift is to surround the atomic sample in a cryogenically
cooled shield �30�. Doing so reduces both the magnitude and
thus the uncertainty of the BBR shift. Another approach is to
enclose the atoms in a chamber closely resembling the black-
body cavities used for thermal radiation metrological stan-
dards �31�. For example, the optically confined atoms can be
transported in a moving lattice from a main chamber to a
smaller, black-body cavity �8�. By careful temperature con-
trol of this small cavity made of highly-thermally conductive
material, excellent temperature homogeneity can be main-
tained. The very limited optical access �for lattice laser and
clock probes� enables the effective emissivity of the cavity
interior to be very close to unity. To reach the 10−17 clock
uncertainty, the BBR environment must be known at the part
per thousand level at room temperature, corresponding to a
BBR temperature accuracy at the 100 mK level.

The differential polarizability must also be carefully de-
termined to higher accuracy. In the case of cesium, a well-
controlled dc electric field has been used to induce a clock
shift and determine the differential static polarizability �32�.
As well, some atom interferometric techniques may hold
promise for directly measuring the differential polarizability
at better than the 1% level �33�. Here we address the
improved determination of the differential polarizability
based on atomic structure measurements. The uncertainty
of the differential static polarizability is determined by the
uncertainties in the polarizabilities of the two clock states.
The static polarizability of the ground state �1S0

�0�
=197.2�2� a.u. �15� is known with 0.1% accuracy. Conse-
quently, the task at hand is to determine the static polariz-
ability of the 5s5p 3P0

o state with a similar level of accuracy.
This is a key step towards Sr lattice clock operation at the
10−17 uncertainty level. We now discuss this problem in de-
tail and present a possible solution in the following sections.

C. Calculation of electric dipole ac polarizabilities of the 5s2

1S0 and 5s5p 3P0
o states

Using the wave functions of the low-lying states obtained
as a result of solving the multiparticle Schrödinger equation,
we are able to calculate ac polarizabilities of the 5s2 1S0 and
the 5s5p 3PJ

o states. As one check of the quality of our cal-
culations, we can find the magic wavelengths: �0 at which
�1S0

��0�=�3P0
o��0� and �1 at which �1S0

��1�=�3P1
o��1� and

compare these values against the experimental results. In re-
cent works these magic wavelengths were determined with
high precision to be �0�1S0-3P0

o�=813.42735�40� nm �8� and
�1(1S0-3P1

o�mJ= �1�)=914�1� nm for linear polarization
�34�. Furthermore, our calculation can also be checked
against a recent measurement of the ac Stark shift associated
with the probe of the �1S0→ 3P0

o� clock transition itself �8�.
We start with a brief description of the method used to

calculate the electric dipole polarizabilities. The equation for
the ac electric dipole polarizability of a state g can be written
in the following form:

�Eg
��� = 2

k

�Ek − Eg��
g�d0�k��2

�Ek − Eg�2 − �2

= 
k

�
g�d0�k��2

Ek − �Eg + ��
+ 

k

�
g�d0�k��2

Ek − �Eg − ��

�
1

2
��Eg+��0� + �Eg−��0�� . �4�

The two terms in the bottom line of Eq. �4� can be viewed as
the static polarizabilities of state g calculated for the shifted
energy levels of Eg+� and Eg−�, respectively. Thus, our
task is reduced to computation of these two static polarizabil-
ities.

Following Refs. �35,36� we decompose an ac polarizabil-
ity into two parts

���� = �v��� + �c��� . �5�

The first term describes excitations of the valence electrons.
The second term characterizes excitations of core electrons
and includes a small counter term related to excitations of
core electrons to occupied valence state. The core polariz-
ability �c was calculated at �=0 to be �c�0�=5.4 a.u. �15�.
Since �c contributes to the total polarizability only at the
level of a few percent and its dependence on frequency is
very weak, the value of 5.4 a.u. can also be used for calcu-
lations of the total ac polarizabilities. This approximation of
a constant core polarizability over the relevant frequency
range introduces an additional uncertainty of �0.1% to the
total 3P0

o polarizability.
It is worth mentioning that the core is the same for the 5s2

1S0 and the 5s5p 3PJ
o states. For this reason,

�1S0

c ��� � �3PJ
o

c ���

and we arrive at the following expression:

�1S0
��� − �3PJ

o��� � �1S0

v ��� − �3PJ
o

v ��� . �6�

The method of calculation for the dynamic valence polar-
izabilities �v��� is described elsewhere �see, e.g., Refs.
�36,37��. Here we only briefly recapitulate its main features.
These polarizabilities are computed with the Sternheimer
�38� or Dalgarno-Lewis �39� method implemented in the
CI+MBPT framework. �Here we denote 
 and RPA correc-
tions as the many-body perturbation theory �MBPT� correc-
tions.� Given the wave function and energy Eg of state g, we
find intermediate-state wave functions ��� from an inhomo-
geneous equation

����� =
1

Heff − �Eg � ��k

�k�
k�d0�g�

=
1

Heff − �Eg � ��
d0�g� . �7�

Using Eq. �4� and ��� introduced above, we obtain
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�v��� =
1

2
�
g�d0���+� + 
g�d0���−�� , �8�

where superscript v emphasizes that only excitations of the
valence electrons are included in the intermediate-state wave
functions ��� due to the presence of Heff.

In Table II we present the values of the static polarizabil-
ities and the ac polarizabilities of the 5s2 1S0 and the 5s5p
3P0,1

o states computed for different values of � using the CI
+MBPT approach. As a first step we solved an inhomoge-
neous equation and found the valence parts of the polariz-
abilities. Then the values of the polarizabilities of the ground
state were corrected as follows. We used the fact that the
intermediate 5s5p 1P1

o state contributes to this polarizability
at the level of 97%. Knowing the experimental energy dif-
ference �E1P1

o-E1S0
� and the matrix element

�
5s2 1S0�d�5s5p 1P1
o��=5.249�2� a.u. extracted from the pre-

cise measurement of the lifetime of the 5s5p 1P1
o state �16�,

we replaced the theoretical contribution of the 5s5p 1P1
o state

to the ground-state polarizability by the experimental value.
Finally, we added �c term to the valence parts, arriving at the
values listed in Table II.

Starting from the 0.05% uncertainty of the
�
5s2 1S0�d�5s5p 1P1

o�� matrix element, we estimated the un-
certainty of the a.c. polarizability of the ground state at the
level of 0.1%. In particular, for the static polarizability, we
obtained �1S0

�0�=197.2 a.u., in perfect agreement with the
result obtained in Ref. �15� using a different basis set.

Experiments �8,34� have determined the magic wave-
lengths for the 1S0-3P0

o and 1S0-3P1
o�mJ= �1� transitions to

be 813.4 and 914 nm, respectively. As is seen from Table II,
the calculations carried out in this work give the values of
805 and 902 nm for these magic wavelengths, respectively.
Thus, the agreement between theoretical and experimental
results is at the level of 1%. The behavior of the ac polariz-
abilities of the 1S0 and the 3P0

o states in the wavelength range
from 650–950 nm is illustrated in Fig. 2. A large peak at
679 nm for the 3P0

o state arises from the contribution of the
5s6s 3S1 state, while a small peak in the vicinity of 690 nm
for the 1S0 ac polarizability is due to the contribution of the
5s5p 3P1

o state. Experimentally, the differential ac polariz-
abilities in the form of the clock frequency shift induced by
the clock probe laser itself is known. With a probe laser
intensity of 20 mW /cm2, the fractional frequency shift was
measured to be −1.5�0.4��10−15 �8�. Assuming the same
probe laser intensity and the values of the polarizabilities for
the 1S0 and 3P1

o states obtained at 698.4 nm �see Table II�,
the calculated fractional shift is −1.2�10−15, in a good
agreement with the experimental value.

It is worth noting that knowing the precise experimental
values of the magic wavelengths and using the fact that
�3P0

o�813.4 nm�=�1S0
�813.4 nm� and �3P1

o,�mJ�=1�914 nm�
=�1S0

�914 nm�, we can refine our calculation and predict
with high accuracy the values of the ac polarizabilities of
the 3P0

o and 3P1
o states at these wavelengths. We obtain

�3P0
o�813.4 nm�=286.0�3� a.u. and �3P1

o,�mJ�=1�914 nm�
=261.2�3� a.u., matching the polarizabilities of the 1S0 state
at these two wavelengths.

In Table III we present the values of the individual con-
tributions from six low-lying even-parity intermediate states
to the valence parts of the static polarizability and the ac

TABLE II. Calculated polarizabilities at a few selected optical
wavelengths. Wavelengths � are in nm, the frequencies � are in a.u.
and the electric dipole ac polarizabilities of the 5s2 1S0 and the
5s5p 3P0,1

o states are in au. The polarizability of the 3P1
o state is

calculated for the projection �mJ�=1 and linearly polarized light.

� � ��5s2 1S0� ��5s5p 3P0
o� ��5s5p 3P1

o�

0.0000 197.2 457.0 498.8

698.4 0.0652 351.8 909.2

805.0 0.0566 288.9 289.3

813.4 0.0560 286.0 280.5

902.2 0.0505 263.5 263.4

914.0 0.0499 261.2 256.1

650 700 750 800 850 900 950

λ (nm)

200

300

400

500

600

700

800

900

1000

1100

α Ε1
(λ

)(
a.

u.
)

3
P0

1
S0

FIG. 2. �Color online� Electric
dipole ac polarizabilities for 5s2

1S0 �solid line� and 5s5p 3P0
�dashed line� states of Sr. The po-
larizabilities are shown as a func-
tion of optical wavelength �.
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polarizabilities at �=813.4 nm and �=698.4 nm for the 3P0
o

state. As is seen from Table III, for the 3P0
o static polarizabil-

ity, four even-parity states �5s4d 3D1, 5s6s 3S1, 5s5d 3D1,
and 5p2 3P1� contribute at the level of 92%. If the sum of
these four contributions are determined experimentally with
an accuracy 	0.1% and the contributions of all the rest of
the discrete and continuum states are known at the level of
1–2%% from calculations, the overall polarizability of the
5s5p 3P0

o state can be determined with the accuracy 	0.1%.
Experimental determination of the four dominant contri-

butions may be accomplished directly from lifetime or tran-
sition rate measurements. However, the lifetime data should
be accompanied by high accuracy branching ratio measure-
ments. Alternatively, we could measure single channel decay
directly to the 5s5p 3P0

o state. In addition, it is possible to
constrain the four contributions using other spectroscopic
data such as the magic wavelength �0 and the light shift at
698 nm, which will naturally be measured and confirmed by
a number of future clock experiments. At both wavelength
regions the same four states dominate the polarizability as in
the static case. The general strategy would be to use spectro-
scopic data to constrain the most dominant contribution for
that specific case.

Since the 5s4d 3D1 state dominates the four critical con-
tributions to the static polarizability, and has less contribu-
tion to the dynamic polarizability at wavelengths of interest
�see Table III�, it would thus be maximally beneficial to mea-
sure this contribution directly with an oscillator strength
measurement between 5s5p 3P0

o and 5s4d 3D1. Doing so
avoids upscaling of the uncertainty via error propagation.
The high accuracy experimental measurement for the
5s5d 3D1 state �50� can be further improved by monitoring
its decay to 5s5p 3P0

o directly. Then, combining the measure-
ments of �0 and the light shift at 698 nm would allow us to
constrain contributions from both 5s6s 3S1 and 5p2 3P1, per-
mitting constraining �3P0

o�0� at the level of �1S0
�0�.

The magic wavelength, �1, could in principle also aid the
constraint. However, additional sensitivities of the 5s5p 3P1

o

polarizability from J=0 and J=2 even-parity states are large

and complex. Furthermore, the vector nature of this state
requires careful experimental control of light polarization. In
the following section we present the results of the theoretical
calculation of transition rates and oscillator strengths most
relevant to the 3P0

o and 1S0 polarizabilities and compare them
to existing experimental and theoretical data in the literature.

D. Transition rates and oscillator strengths

The transition rate �W� and the oscillator strength �f� for a
transition from an initial state ���J�L�S�� to a final state

�JLS� can be represented as �see, e.g., Ref. �40��

W���J�L�S� → �JLS�

=
4����3

3

1

2J� + 1
�
�JLS�d���J�L�S���2, �9�

f���J�L�S� → �JLS� = −
2�

3

1

2J� + 1
�
�JLS�d���J�L�S���2,

�10�

where � denotes all quantum numbers other than J, L, and S,
and �=E��J�−E�J is the transition frequency from the initial
state to the final state. With this definition the oscillator
strength is positive for absorption and negative for emission.

Using Eqs. �9� and �10� and knowing E1 transition ampli-
tudes between different states, we were able to calculate rates
and oscillator strengths for the transitions involving the
5s2 1S0 and the 5s5p 3P0

o states. In Table IV we list the tran-
sition rates and oscillator strengths for the strongest transi-
tions from the mentioned states. Note that the transition rates
Wn→1S0,3P0

o and the oscillator strengths f 1S0,3P0
o→n were calcu-

lated with use of the theoretical energy levels. Where avail-
able we compare our results with other experimental and
theoretical values. As is seen from Table IV, there is a rea-
sonable agreement between the results of this work and other
data.

In certain cases we used for comparison the nonrelativis-
tic values of transition rates given in the literature. In the LS

TABLE III. Individual contributions �ICs� from six low-lying intermediate states to the valence parts of
the static polarizability �3P0

o
v �0�=451.5 a.u. and to the ac polarizabilities �in a.u.� at the wavelengths �

=813.4 and 698.4 nm. �3P0
o

v �813.4 nm�=280.6 a.u. and �3P0
o

v �698.4 nm�=903.8 a.u. D��
5s5p 3P0
o�d�n�� is

the reduced matrix element of the electric dipole operator d. The row “total” gives the sum of the contribu-
tions for each column.

�n� D �a.u.�

IC to �3P0
o

v �0� IC to �3P0
o

v �813.4 nm� IC to �3P0
o

v �698.4 nm�

�a.u.� �%� �a.u.� �%� �a.u.� �%�

5s4d 3D1 2.74 286.1 63.4 −31.0 −11.3 −22.2 −2.5

5s6s 3S1 1.96 38.3 8.5 126.4 45.9 705.8 78.1

5s5d 3D1 2.50 44.2 9.8 68.3 24.8 84.8 9.4

5p2 3P1 2.56 45.3 10.0 68.7 25.0 84.1 9.3

5s7s 3S1 0.52 1.7 0.4 2.4 0.9 2.8 0.3

5s6d 3D1 1.13 7.4 1.6 9.6 3.5 10.8 1.2

Total 423.4 93.8 245.8 89.3 868.4 96.1
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coupling approximation, there is a simple relation between
relativistic and nonrelativistic reduced matrix elements
�MEs� of the operator d. Since the operator d commutes with
S we obtain �40�


�JLS�d���J�L�S�� = �SS�
��2J + 1��2J� + 1�

� �− 1�S+L+J�+1� L J S

J� L� 1
�

�
�LS�d���L�S� . �11�

Knowing a nonrelativistic transition rate we were able to
determine the corresponding ME of the electric dipole opera-
tor 
�LS�d���L�S�. If the LS coupling approximation is
valid, using Eq. �11�, the nonrelativistic ME can be related to
the relativistic ME 
�JLS�d���J�L�S��. We also need to ac-
count for the fact that in a nonrelativistic case the transition
frequency �LS between two states is given by expression
�LS=E��J�L�S�−E�JLS, where E�JLS is the center of gravity of
the respective multiplet. For this reason, in general, �LS can
slightly differ from �=E��J�−E�J. Finally, using Eq. �9� we
can find the relativistic transition rate. We used this approach
to compare the relativistic transition rates obtained in this
work with the nonrelativistic values presented in Ref. �41�.

If the LS coupling breaks down, Eq. �11� is no longer
valid. In this case, to compare the relativistic transition rates
given by Eq. �9� with the non-relativistic transition rates
W���L�S�→�LS�, one should use a more general relation
�40�

W���L�S� → �LS� =
1

�2L� + 1��2S� + 1�

� 
JJ�

�2J� + 1�W���J�L�S� → �JLS� .

�12�

In the right-hand side of this equation the summation goes
over all possible values of J� and J. Consequently, we need
to find all transitions rates �permitted by selection rules� from
the fine structure levels of one multiplet to the fine structure
levels of another multiplet.

To provide a straightforward comparison of the calcula-
tion here with experimental data, lifetimes of the four states
which dominate the 3P0

o polarizability contributions have
been evaluated. For these four states, decay to the 5s5p 3PJ

o

states is the only significant radiative decay channel so the
lifetimes can provide direct information on the relevant ma-
trix elements. A number of lifetime and transition rate mea-
surements are available for comparison �41,42,45–52�, how-
ever in many instances with limited accuracy. Table V
summarizes the results where the 5s4d 3D1, 5s6s 3S1,
5s5d 3D1, and 5p2 3P1 lifetime calculations are compared to
available measurements. In some cases, the measured life-
times were reported for a particular J value in the excited
state multiplet, and in others only a mean lifetime for the
entire multiplet was given, leading to complications in the
analysis.

TABLE IV. Transition rates Wn→0 and oscillator strengths f0→n for relevant energy levels in Sr. The
results are compared with other available experimental and theoretical data.


0� �n�

Wn→0��106 s−1� f0→n

This work Other data This work Other dataa

5s2 1S0 5s5p 1P1
o 186.0b 190.01�14�c 1.82b 1.92�6�

191.6�1.1�d

215e

5s6p 1P1
o 1.49 1.87�26�a 0.0058 0.0072�10�

3.79e

5s7p 1P1
o 5.13 5.32�61�a 0.15 0.16�2�

3.19e

5s5p 3P0
o 5s4d 3D1 0.29 0.088

5s6s 3S1 8.39 7.32e 0.173

5s5d 3D1 38.1 30.7e 0.395

5p2 3P1 41.3 0.418

5s7s 3S1 2.28 1.80e 0.019

5s6d 3D1 14.3 0.099

aParkinson et al. �43� �expt.�.
bThese values are presented only for comparison. In all calculations performed in this work involving

1S0�d�1P1

o�, we used the value of this ME obtained from Ref. �16�.
cYasuda et al. �16� �expt.�.
dNagel et al. �44� �expt.�.
eThese numbers were obtained from the values given in Werij et al. �41� with use of Eqs. �9� and �11� �see
Sec. III D for details�.
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In the case of the 5s4d 3D state we also evaluated the total
transition rate for the multiplet since to our knowledge the
only lifetime measurements for the 5s4d 3D levels were per-
formed on the entire multiplet. In the framework described
above we found the W�5s4d 3DJ�

→5s5p 3PJ
o� transition

rates for all possible J and J�, and using Eq. �12�, we ob-
tained

1

15
JJ�

�2J� + 1�W�5s4d 3DJ�
→ 5s5p 3PJ

o� = 0.41 � 106 s−1

in agreement with the experimental value W�5s4d 3D
→5s5p 3Po�=0.345�24��106 s−1 �42�.

The lifetimes of the 5s5d 3DJ states have been measured
with high accuracy �0.1%� in Ref. �50� and are in good
agreement with other measurements as well as our calculated
values. Reference �50� also reported a 1% measurement of
the 5p2 3P2 lifetime, while other direct measurements of this

multiplet yield consistent 3P1 lifetimes having accuracies at
the 15–20% level. Relative to 5s5d 3DJ and 5p2 3PJ, the
5s6s 3S1 experimental data has larger scatters between differ-
ent measurements. Notably all of these measured lifetime
values agree well with our calculations.

Given the results in Tables V and III, the 5s4d 3D1 state
should have the highest measurement priority as it dominates
the 3P0

o static polarizability. It also has a large disagreement
between the experiments in Refs. �42,45�, meriting further
experimental investigations. The next priority goes to the
5s6s 3S1 state due to the scatter in existing data and its large
contribution to the ac polarizability of 3P0

o. Perhaps a good
strategy is to measure its decay directly to individual
5s5p 3PJ

o states. Confirmation of the high accuracy result of
Ref. �50� for the 5s5d 3D1 state and improvement upon the
5p2 3P1 result listed in Table V or, alternatively, the use of
the measured magic wavelength and clock laser light shift,
can then be sufficient to determine the 3P0

o polarizability at
the 0.1% level.

IV. CONCLUSION

In this work we have performed detailed calculations for
further reducing the inaccuracy of the Sr optical atomic clock
to 1�10−17 and below. To focus on the outstanding problem
of BBR-related frequency shifts, we calculated ac polariz-
abilities of the 1S0 and 3P0

o clock states. We verify our cal-
culations with available experimental data. For example, the
theoretically calculated magic wavelengths for the 1S0-3P0

o

and the 1S0-3P1
o transitions are in 1% agreement with experi-

ments. The agreement between theory and experiment on the
ac Stark shift of the clock transition itself is also good. We
have calculated individual contributions of six lowest-lying
even-parity states to the polarizability of the 3P0

o state at �
=0 and for the wavelengths �=698.4 nm and 813.4 nm. We
determined four even-parity states whose total contribution
to the static polarizability of the 3P0

o clock state is 	90%.
Using the modern methods of atomic calculations we can
find the contribution of all the other discrete and continuum
states �constituting 10%� to the 3P0

o polarizability at the level
of 1–2%%. For this reason, if the contributions of the four
states identified here are experimentally determined with
0.1% accuracy, the same level of accuracy can be obtained
for the total polarizability of 3P0

o. In the near future we plan
to undertake experimental measurements to determine the
oscillator strengths for the four identified states. Measure-
ments could include transition linewidths, power broadening
coefficients, direct lifetime determinations of individual J
levels, and improved determination of the clock laser ac
Stark shifts. These experimental measurements can be fur-
ther combined with the well-known value of �0. The experi-
mentally determined values will be used to refine the theory
calculations presented here to reach the goal of determining
the polarizability of 3P0

o at 0.1%.
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