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1. Introduction

Optical frequency combs have become ubiquitous tools for precision optical measurement [1,
2]. They have enabled a new generation of optical frequency references based on narrow tran-
sitions in single trapped ions [3–6] and cold, neutral, atomic ensembles [7–13]. In addition, the
comb’s ability to phase coherently transfer optical references across large spectral gaps allows
for direct optical atomic clock comparison, placing new constraints on the evolution of funda-
mental constants [6] as well as driving atomic clock technology [7]. Recently, this broadband
phase coherence has facilitated the production of ground-state ultracold polar molecules via
stimulated Raman adiabatic passage [14, 15].

Previous evaluations have proven the frequency comb’s suitability for precision optical
metrology. The fractional frequency uncertainty of Ti:sapphire-based frequency combs has
been evaluated at the 10−19 level at 1000 s [16, 17]. Experiments testing the phase coherence
of Ti:sapphire combs have been able to place upper limits on the relative linewidth of differ-
ent spectral regions for both locked and free running combs at 20 mHz [18] and 9 mHz [19],
respectively, and were ultimately limited by by differential-path technical noise caused by air
currents and mirror vibrations. The frequency comb used in this work was previously compared
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to a 10 W average power Yb fiber comb locked to a common optical reference, with a resulting
1 mHz resolution bandwidth-limited relative linewidth [20]. This indicates that the Ti:Sapphire
comb should be capable of supporting narrower relative linewidths. Here we report a new lower
limit to the intrinsic phase coherence of a mode-locked Ti:sapphire laser phase locked to an op-
tical reference, by both linewidth and phase noise measurements. This work demonstrates that
the mode-locking process correlates the phase noise of individual frequency comb modes at a
level far below the quantum noise limit of individual free-running comb modes.

A complete description of the frequency of a given output mode of a comb is given by

νn(t) = n frep(t)+ f0(t)+ εn(t). (1)

Here n is the index labeling the harmonic of the repetition rate frep(t) and f0(t) is the carrier
envelope offset frequency. Both frep(t) and f0(t) are radio frequency (RF) signals that can be
measured by directly observing the output pulse on a photodetector, and by employing a self-
referencing technique (e.g. [21]), respectively. The term εn(t) represents frequency noise in the
vicinity of mode n that is not described by fluctuations in frep(t) or f0(t). In other words, εn(t)
accounts for mode-dependent noise terms that are at least quadratic in order with respect to n
as a result of pulse-to-pulse fluctuations, which could be in part caused by time-dependent fluc-
tuations of higher-order intracavity dispersion. Additionally, and most importantly, εn(t) is also
assumed to include fluctuations not related to any other comb mode—fluctuations that are com-
pletely uncorrelated across the comb. In this way, εn(t) also accounts for possible spontaneous
emission-induced frequency noise that does not affect the global timing and phase parameters
of the comb as a result of imperfect mode-locking. This is in contrast to the case of an ideal
comb, where the mode n is perfectly defined with respect to mode m in the limit where both εm
and εn are zero, due to the mode locking mechanism enforcing a fixed phase relation across the
comb. While the relative coherence of comb teeth is only limited by the quality of the mode-
locking process, a free-running frequency comb, when compared to an external reference, has
noise properties dominated by vibrational noise in the mirror mounts and thermal drifts in the
laser cavity coupling to both frep and f0.

Actively phase locking a Ti:sapphire comb to an optical reference requires control of both
frep and f0 via control of the laser cavity length and pulse group delay (e.g. [22, 23]). Combin-
ing the comb and a continuous wave (CW) laser results in a time-dependent heterodyne beat,
formed when a given comb tooth n interferes with the CW laser. This RF signal is denoted by
fb,n(t). By phase locking fb,n(t) to an RF source, the comb ideally acquires the optical phase
information of the reference laser and the RF source. This is due to the fixed phase relationship
between the comb’s output modes, enforced by the mode-locking process. When locked via
control of frep, fb,n(t) is related to the RF reference frequency, fRF, and the comb degrees of
freedom by

fb,n(t) = fRF +δ fb,n(t) = n frep(t)+ f0(t)+ εn(t)−νCW(t). (2)

Here, δ fb,n(t) is the locking error due to the finite gain of the servo, and νCW(t) is the frequency
of the CW optical reference. We defer consideration of shot noise, which adds a white phase
noise term to the right side of Eq. (2), to Section 3. Additionally locking f0 to an RF reference,
with locking error δ f0(t), constrains both comb degrees of freedom. Solving for frep(t) yields

frep(t) =
1
n

[
fRF +δ fb,n(t)− εn(t)+νCW(t)− f0−δ f0(t)

]
. (3)

It is important to note that the locking errors and noise term εn(t) write noise onto frep(t), thus
globally affecting the comb. Using Eq. (1) and frep(t) given in Eq. (3), the optical frequency of
a comb mode numbered m is given by

νm =
m
n

[
fRF +δ fb,n(t)− εn(t)+νCW(t)

]
+

(
1− m

n

)
[ f0 +δ f0(t)]+ εm(t). (4)
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Again the added noise term, εm(t), represents extra frequency noise added to mode m by both
correlated and uncorrelated laser dynamics. Thus, measuring the comb mode m relative to mode
n in a precise way allows upper limits on the intrinsic noise properties of the comb to be deter-
mined. One way to accomplish this, as we report in this work, is to use the second harmonic
of the optical reference to which mode n is locked to compare the phase coherence of comb
modes n and m = 2n in a direct way. In this case, the expected heterodyne beat between the
second harmonic light and the comb mode 2n, which represents an out-of-loop measurement
of the relative coherence of modes n and 2n, is given by

fb,2n(t) = ν2n(t)−2νCW(t) = 2 fRF− f0−δ f0(t)+2δ fb,n(t)+ ε2n(t)−2εn(t). (5)

Here, the term ε2n(t)−2εn(t) represents the time-fluctuating out-of-loop frequency noise added
by the comb dynamics.

The Wiener–Khinchin theorem relates time-domain frequency fluctuations to single-sided
frequency noise power spectral density by

Sν( f ) = 4
∫ ∞

0
cos(2πτ f )Rξ ξ (τ)dτ. (6)

Here, Sν( f ) is the power spectral density associated with the time-fluctuating frequency ξ (t).
The autocorrelation term Rξ ξ (τ) is defined by

Rξ ξ (τ) = 〈ξ (t)ξ (t + τ)〉= lim
T→∞

1
T

∫ T/2

−T/2
ξ (t)ξ (t + τ)dt. (7)

Additionally, Sν( f ) is related to phase power spectral density by

Sφ ( f ) = Sν( f )/ f 2. (8)

In the case that ξ (t) represents the noise ε2n(t)−2εn(t), then Eq. (6) provides a description
of the frequency noise power spectral density induced by this term on the out-of-loop beat.
Equation (6) will include the possible effects of correlated dynamics between ε2n(t) and εn(t),
which add in quadrature with the completely uncorrelated components of ε2n(t) and εn(t).
Thus, Sν( f ) of Eq. (6), with ξ (t) = ε2n(t)−2εn(t), represents an upper limit to the completely
uncorrelated noise between modes n and 2n.

2. Experiment

The basic approach we take for our measurement of the out-of-loop coherence between modes
n and 2n is to stabilize the comb to a CW laser, and then use the second harmonic of the same
CW laser as a reference. When compared against the comb, this second harmonic reference
enables the phase coherence of the comb across a full optical octave to be tested. The optical
phase lock to the CW laser is implemented by servo control of the laser cavity length and
pump power, while an f –2 f interferometer provides the additional signal used to stabilize f0.
The heterodyne beat between the comb and second harmonic CW reference represents the out-
of-loop signal, which includes contributions from both the frep and f0 phase locked loops as
described by Eq. (5). Any differential-path effects limit the sensitivity of this measurement, and
we have taken care to limit their effect by careful design.

The specific octave spanning Ti:sapphire frequency comb used in this experiment is similar
to the system described in [24]. The relatively low repetition rate of 95 MHz leads to high pulse
energy. This facilitates self phase modulation in the laser crystal, which broadens the spectrum
to a full octave, the wings of which are not resonant with the cavity and are immediately trans-
mitted by the output coupler. As detailed in Fig. 1, approximately 3 nm wide spectral regions at
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Fig. 1. After passing through an f −2 f interferometer for self-referencing, the remaining spec-
trum (600–1100 nm) from the octave-spanning frequency comb is broadened in photonic crystal
fiber (PCF) and overlapped with the output of an NPRO Nd:YAG at 1064 nm. The resulting
heterodyne beat, fb,n, and the carrier envelope offset frequency, f0, are locked to RF references.
Polarization-selective doubling of the overlapped beams ensures that only the CW light is fre-
quency doubled, while collinear beam propagation reduces technical noise. The out-of-loop beat
at 532 nm, fb,2n, is analyzed as detailed in the text.

575 nm and 1150 nm are used to measure f0 with a standard f –2 f interferometer. This RF sig-
nal is used to lock f0, via group delay actuation (using the same method as described in [22]), to
an RF source that shares a common timebase with all the RF sources in the experiment. The re-
maining optical spectrum that is not used to measure f0 consists of 600–1100 nm light, which is
rebroadened to an optical octave centered near 750 nm using photonic crystal fiber (PCF). The
output of the PCF is combined with a Nd:YAG non-planar ring oscillator (NPRO) CW optical
reference at 1064 nm with polarization orthogonal to the comb. After passing through optical
band-reject filters to remove the majority of the comb power in the unused central portion of the
comb spectrum, the co-propagating comb and 500 mW of 1064 nm light pass through a tem-
perature stabilized periodically poled lithium niobate (PPLN) crystal, doubling the 1064 nm
CW light while overlapped with the comb, reducing technical noise due to differential path
effects. The 1064 nm comb light is not doubled due to its orthogonal polarization, although
if it were the resulting RF beat would be distinguishable from the true out-of-loop signal by
its central frequency. A λ/2 at 1064 nm, λ at 532 nm wave plate is placed before the PPLN
crystal in order to ensure that the the second harmonic CW light has the same polarization as
the 532 nm comb light, since the PPLN outputs parallel polarizations of second harmonic and
fundamental CW light. A single beam exits the PPLN crystal, with the 1064-nm comb light
polarized orthogonally to the other three components of interest.

A Glan-Thompson polarizer separates the majority of the 1064 nm comb light and ∼1 mW
of the CW 1064 nm light, allowing measurement of the RF heteredyne beat at 1064 nm. As
described by Eqs. (2) and (3), this signal is used to stabilize the comb mode at νn (n' 3×106)
by phase locking the heterodyne beat, via cavity length and pump power control, to an RF
synthesizer. The remaining CW light at 1064 is transmitted by the polarizer, along with the
majority of the comb and CW component at 532 nm.

The transmitted light contains approximately 500 µW of second harmonic CW light and
comb near 532 nm, which is filtered to reject a large component of residual fundamental CW
light. We measure the resulting heterodyne beat between the comb mode 2n and the second har-
monic CW light. The expected RF frequency is given by Eq. (5), where νCW is now specifically
referring to the frequency of the NPRO. In principle, the time-domain frequency error due to
finite servo gain, given by

δ flock(t) =−δ f0(t)+2δ fb,n(t), (9)
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Fig. 2. (a) Out-of-loop beat mixed to 50 kHz at 100 kHz span with 125 Hz resolution bandwidth.
Servo bumps are evident due to the contribution of finite locking gain and bandwidth to δ flock(t).
(b) Out-of-loop beat mixed to 1 Hz at 100 mHz span and 244 µHz resolution bandwidth. A
strong coherent carrier is evident, even in this narrow resolution bandwidth.

can be estimated from the in-loop phase error signals and is indistinguishable from fundamental
noise described by the term ε2n(t)−2εn(t). The phase noise power spectral density associated
with this term can be expressed via Eqs. (6–8) as

Sφ ( f ) =
4
f 2

∫ ∞

0
cos(2π f τ)

[
Rδ f0δ f0(τ)+4Rδ fb,nδ fb,n

(τ)−4Rδ f0δ fb,n
(τ)

]
dτ. (10)

If the cross-correlation term, Rδ f0δ fb,n
(τ), is zero, the expected contribution of the locking error

to the out-of-loop noise can thus be estimated by a weighted sum of the in-loop phase noise
power spectral densities. This will only occur if there are no common noise sources for the
servos locking f0 and the comb to the NPRO reference.

While Eq. (10) gives a prediction for the out-of-loop frequency noise from the in-loop locking
error, there are two additional important sources of out-of-loop noise that are indistinguishable
from fundamental comb noise. Shot noise propagates through the optical phase locks for both
fb,n and f0, and adds in quadrature with the shot noise on the detector for fb,2n, as discussed
in Section 3. Out-of-loop technical noise such as differential path Doppler noise or amplitude
to phase conversion in the PCF [25] also contributes to the measured out-of-loop phase noise
spectrum.

One important feature of Eq. (5) is that it does not depend on the frequency of the NPRO,
which, despite being quite stable due to its monolithic construction, has drifts on the order of
1 MHz/min. A shift of 1 MHz will show up on the 1 Hz level in fb,m(t) if m = 2n + 1, i.e. the
conjugate beat is used. This is clearly unacceptable for measuring comb linewidth on the µHz
level. Thus, only fb,2n(t) is considered.

Figure 2 shows fast Fourier transforms (FFTs) of fb,2n(t), after it has been mixed down to
near DC. Figure 2(b) represents the narrowest resolution bandwidth obtainable by the FFT
instrument used in this experiment, due to an instrument-limited measurement time of ∼ 1 hr.
Obtaining better resolution bandwidth could be achieved by digitally sampling and recording
the data over a longer time period and subsequently performing the FFT. However, at time
scales over one hour, the microstructure fiber alignment drifts, causing the signal to noise ratio
of the out-of-loop beat to drop well below 20 dB in a 100 kHz bandwidth. Servo unlocks also
occur on this timescale due to finite servo range and thermal drift.

The measured single-sided phase noise spectral density of the out-of-loop beat, shown in
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Fig. 3. Left axis: Estimate of the out-of-loop phase noise contribution of δ flock based on a
weighted incoherent sum of in-loop phase noise power spectral densities of both servo loops
(blue) compared to the measured overall out-of-loop phase noise spectral density (red). Right
axis: Root mean square (RMS) phase error integrated down from 100 kHz for both the contribu-
tion of the servo errors on out-of-loop noise (dashed blue) and the measured out-of-loop phase
noise spectral density (dashed red).

Fig. 3, is complimentary to the linewidth measurement. The out-of-loop phase noise is directly
visible in the sidebands of Fig. 2(a). We note that the integrated root-mean-square (RMS) phase
is 0.35 rad when integrated down from 100 kHz to 10 mHz. This result, when combined with
Fig. 2(b)—which shows no significant features 50 mHz away from the carrier—indicates that
the 244 µHz instrument-limited coherent linewidth in Fig. 2(b) is a robust upper limit to the
beat linewidth. The estimated locking error contribution to the phase noise from typical error
signal spectral densities is additionally shown in Fig. 3. Here, Eq. (10) has been used with the
assumption that Rδ f0δ fb,n

(τ) → 0. The discrepancy between the predicted out-of-loop phase
noise near 50 kHz is due to the servo bump of the RF tracking filter used in the f0 phase lock.
The f0 servo does not have the bandwidth to track this noise, so it appears only on the in-loop
spectrum. Further discrepancies at Fourier frequencies in the 1 kHz range show the inadequacy
of the assumption that Rδ f0δ fb,n

(τ) → 0, reflecting the fact that the cavity length and group
delay servos are coupled when used to lock the comb to an optical reference and additionally
may share common technical noise sources. When integrated from 100 kHz to 10 mHz, the
expected integrated RMS phase predicted by the in-loop locking error is 70 mrad below the
observed out-of-loop integrated phase error.

To overcome the measurement time-limited resolution bandwidth of 244 µHz and examine
the out-of-loop beat at significantly improved phase noise sensitivity, we take the approach
of studying the phase noise of a harmonic of the out-of-loop beat. A step recovery diode
impedance matched at 100 MHz generates over 30 harmonics, amplifying the phase noise.
The diode generates a ∼ 100 ps pulse for every high-to-low voltage zero crossing, and this
output can be represented in the time domain as

V (t) = V0

∞

∑
k=−∞

Λ [t− k/ fin−∆φ(t)/2π]'V0

∞

∑
n=−∞

an exp [i2πn fint− in∆φ(t)] . (11)

Here, Λ(t) is a temporally narrow function compared to the inverse input frequency, fin, and
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Fig. 4. (a) RF electronics for analyzing the tenth harmonic of the out-of-loop beat. The 20 MHz
signal is filtered with a 2 kHz passband crystal filter and mixed to 100 MHz before being sent
to the step-recovery diode (SRD). The tenth harmonic is selected for analysis. (b) Schematic
depiction of a Lorentzian lineshape (green) broadened by frequency multiplication factors of
n = 5 (blue) and n = 10 (red), yielding linewidths enhanced by a factor of 25 and 100, respec-
tively. (c) Out-of-loop signal, 190 mHz span with a factor of 10 frequency multiplication. This
corresponds to a 100-fold increase of the phase noise power spectral density in the vicinity of the
carrier, resulting in a 100-fold increase in linewidth, yet a strong coherent peak is still observed
in the 244 µHz resolution bandwidth.

ak are the Fourier series coefficient for Λ(t). The above approximation only holds if the phase
can be approximated as stationary on the timescale of the envelope width. In the limit where
Λ(t) is a perfect Dirac delta function, Eq. (11) is exact. The final sum in Eq. (11) shows that for
harmonic n the phase noise power spectral density, Sn

φ ( f ), is related to that of the fundamental,
Sφ ( f ), by

Sn
φ ( f ) = n2Sφ ( f ). (12)

In order to focus on the phase noise nearest the carrier, a narrow crystal filter centered at
20 MHz with a 2 kHz passband and 3 dB maximum ripple rejects phase and amplitude noise
greater than 1 kHz away from the carrier. This further enforces the assumption of stationary
phase noise on the time scale of 1/ fin and prevents broadband phase noise from causing carrier
collapse when it is multiplied by the diode. Using the system whose key components are shown
schematically in Fig. 4(a), we select the 10th harmonic of the step recovery diode and mix it
down to near DC. Figure 4(c) shows the beat note is still resolution bandwidth limited, even
with the 100-fold increase in phase noise power spectral density.
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Fig. 5. Left axis: Estimated shot noise floor (blue) compared to the measured out-of-loop phase
noise spectral density (red). Phase noise at Fourier frequencies above 12 kHz is limited by broad-
band light noise on the out-of-loop detector. Right axis: integrated root-mean-square (RMS)
phase error from 100 kHz to 10 mHz for the estimated shot noise contribution (dashed blue).

3. Discussion

From Fig. 4(c), it is clear that there is no significant phase noise near the carrier. In order to use
this measurement to extrapolate an upper limit to the actual non-instrument limited linewidth,
we choose a functional form of the phase spectral density corresponding to a random walk in
phase,

Sφ ( f ) =
C
f 2 . (13)

This type of phase diffusion is found due to spontaneous emission in laser systems, resulting
in the famous Schawlow-Townes limit [26, 27] and would arise if the comb were limited by an
“intrinsic linewidth” due to random-walk relative phase diffusion amongst comb modes. The
optical power spectral density corresponding to this form of phase noise is a Lorentzian with
full width at half maximum (FWHM) given by ∆νFWHM = πC. Using Eq. (12), the FWHM of
the nth harmonic of the step recovery diode, ∆νn

FWHM, will thus be related to that of the first
harmonic by

∆νn
FWHM = n2∆νFWHM. (14)

This broadening effect is illustrated in Fig. 4(b). By applying this relationship to the Fourier-
limited linewidth measurement of 244 µHz with multiplication factor n = 10, we can extrapo-
late an upper limit to the comb intrinsic linewidth of 2.44 µHz.

Figure 3 indicates that there is approximately a 70 mrad difference between the extrapolated
integrated phase error and the measured integrated phase error. The extra ∼ 100 mrad in-loop
integrated phase error between 100 kHz and 10 kHz that is due only to the RF tracking filter
servo bump indicates that the true difference, which is an estimate of the total out-of-loop noise,
is at least twice as large. The extra phase noise could come from technical sources, such as
amplitude to phase conversion in the PCF [25] or differential-path Doppler noise. Fundamental
noise sources that cause out-of-loop noise are shot noise and the noise term ε2n(t)−2εn(t).

In order to estimate the effect of shot-noise limited detection on the out-of-loop beat, we
consider the signal to noise ratio at each of the relevant detectors assuming shot-noise-limited
detection. By modeling each servo using simple proportional-integral (PI) transfer functions
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and using empirically determined gain and bandwidth coefficients for both the cavity length
and group delay servos, we show in Fig. 5 the effect of shot noise on the out-of-loop beat. This
noise floor is compared with the measured out-of-loop spectrum, indicating that below 30 kHz,
the measurement is technical noise limited. This justifies the choice of a 100 kHz upper bound
on the phase noise integration shown in Fig. 3. Under a sufficiently large servo bandwidth, the
noise contribution due to Eq. (9) would ideally be eliminated, leaving the shot noise floor as
the ultimate limit to the measurement’s sensitivity to other noise sources, such as out-of-loop
technical noise or intrinsic comb noise. As seen in Fig. 5, the total estimated integrated phase
due to shot noise is of order 100 mrad.

While it is surprising that out-of-loop technical noise sources do not dominate the measured
out-of-loop spectrum, it is important to note that many of the typical noise sources, such as
differential path effects, were designed to be common-mode in our measurement. The results of
[20] show that even without such careful design, the total effect of measurement noise does not
inhibit sub-millihertz measurement precision. Beyond common mode cancelation, additional
out-of-loop noise sources may be obscured due to other higher-order correlations amongst these
processes.

In analogy to the Schawlow-Townes limit, the effect of spontaneous emission noise on fre-
quency combs has been explored [28–31]. With spontaneous emission as the only quantum
noise source, Paschotta et al. find quantum-induced timing jitter causes extra phase noise in the
spectral wings [29]. Wahlstrand et al. take a more complete approach, considering all quan-
tum noise drivers and empirically determined coupling coefficients to extrapolate the quantum-
limited linewidth of individual comb modes as a function of frequency [31]. Both of these
results are predictions of the spectral width of a comb mode compared to an outside reference,
not between individual lines of the same comb. However, they are useful conceptual tools to
understand the scale of the quantum noise. While a locked in-loop error signal linewidth can
be measured to be arbitrarily small, it is the passive mode-locking mechanism that keeps the
relative coherence of comb modes an octave away from being differentially affected by spon-
taneous emission noise. We obtain a conservative lower-limit for the free-running quantum-
limited linewidth of our system from the result given by Paschotta et al.

∆ν = ∆νST

[
1+(2πδντp)

2
]
. (15)

Here, ∆νST is the result obtained by directly applying the Schawlow-Townes limit to the comb,
δν is the distance from the central frequency, and τp is the output pulse width. When we insert
the relevant parameters, we obtain ∆ν ' 100µHz for comb wavelengths near 1064 nm and
532 nm. The analysis of Wahlstrand et al. indicates that full consideration of noise coupling
processes can result result in linewidths orders of magnitude larger in these spectral regions.

By observing a relative linewidth between comb lines an octave apart that is at least two
orders of magnitude lower than that predicted for a free-running quantum-limited comb, we
have shown that the mode-locking mechanism does an excellent job of correlating quantum-
driven phase noise between two comb modes that are one octave apart. Even though only two
degrees of freedom are controlled, the passive mode-locking process leads to a well-defined
phase relationship across the visible and near-IR spectrum.

4. Conclusion

By carefully controlling sources of technical noise, we have placed a new limit on the phase co-
herence of an optical frequency comb by using second harmonic generation to compare modes
n and 2n. Phase noise measurements show a total RMS integrated optical phase error from
100 kHz to 10 mHz of 0.35 rad, and that the majority of accumulated phase error is due to finite
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servo gains, not technical noise from the PCF or intrinsic noise from the comb. We have addi-
tionally placed limits on the fundamental phase-coherence of second harmonic generation, an
extension of the results of Stenger et al. [19]. The relative linewidth of comb modes an octave
apart is less than 2.5 µHz, with no significant phase noise features near the carrier, indicating
that the mode-locking process strongly correlates quantum noise due to spontaneous emission
across the comb. This result is at least two orders of magnitude below the predicted individual
comb modes’ quantum-limited linewidths. Thus, local phase perturbation due to spontaneous
emission at a given wavelength is converted into a global phase perturbation, affecting all modes
equally within the mode-locking bandwidth. The robust broadband phase coherence shown here
demonstrates that there is essentially no practical limit to comb-facilitated coherent distribution
of optical clock signals to arbitrary visible and near-IR wavelengths.
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