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We perform a detailed numerical analysis of Fabry-Perot cavities used for state-of-the-art laser stabilization.
Elastic deformation of Fabry-Perot cavities with various shapes and mounting methods is quantitatively ana-
lyzed using finite-element analysis. We show that with a suitable choice of mounting schemes it is feasible to
minimize the susceptibility of the resonator length to vibrational perturbations. This investigation offers de-
tailed information on stable optical cavities that may benefit the development of ultrastable optical local
oscillators in optical atomic clocks and precision measurements probing the fundamental laws of physics.
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I. INTRODUCTION

Laser radiation with high spectral purity and long-term
stability has important applications in many fields such as
high-precision laser spectroscopy, optical frequency metrol-
ogy, and test of fundamental physical postulates. High-
finesse Fabry-Perot cavities are widely used in frequency sta-
bilization of various laser systems. In this task feedback
control is employed to guide the laser frequency to be within
a small fraction of the linewidth of one of the cavity reso-
nances, eliminating the intrinsic noises of the laser and re-
placing them with the measurement noise associated with the
Fabry-Perot cavity resonance. For a cavity with a moderately
high finesse of �50 000, a resonance linewidth of 30 kHz is
readily obtained. This frequency resonance can have a large
contrast from the shot-noise-limited background and is not
power saturated, features that are particularly useful in ob-
taining a high signal-to-noise ratio �S /N�. Additionally, when
the reflection field of the cavity is employed for error signal
generations, the frequency control bandwidth is not limited
by the cavity linewidth �1�. The possibility of achieving laser
radiations with a long coherence time was investigated �2�.
This line of research has made steady progress �3–7� and has
continuously upgraded the resolving power of spectroscopic
features �8–15�.

In particular, stable laser local oscillators serve as an in-
dispensable ingredient in optical clocks that have anticipated
frequency accuracy reaching 10−18 �11,16,17�. In these opti-
cal clocks with resonance quality factors �Q��1014, Doppler
broadening and collisional frequency shift can be suppressed
by confining single ion �11,18� or neutral atoms
�15,17,19,20� in the Lamb-Dicke regime �21�. On the other
hand, “optical flywheels” based on femtosecond mode-
locked lasers provide the clockwork and establish a phase-
coherent link with the rf frequency standard �22–27�. Parallel

to these encouraging breakthroughs is the development of an
ultrastable probe laser capable of interrogating clock transi-
tions in ions and neutral atoms. Induced by hyperfine cou-
pling or external fields, these nearly forbidden clock transi-
tions can preserve a long coherence time of 1–1000 s
�28–31�. To obtain the line-center information with projected
accuracy, the frequency characteristics of the probe laser
should be compatible with the extremely narrow linewidth
associated with the clock transition. Toward this goal, it is
vital to have in-depth studies of major problems �4,32� that
affect the short- and long-term stabilities of passive Fabry-
Perot cavities used for laser frequency stabilization. Environ-
mental vibration is one of those dominant noise sources.

Vibration perturbations degrade the stability of the optical
length between two mirrors. The structural support transmits
seismic vibrations to the cavity spacer. If not properly iso-
lated, airborne sound pressures act directly on the cavity.
These perturbations induce elastic deformation along the in-
stantaneous direction of the random force, and the effect is
coupled to other directions through a nonzero Poisson ratio.
Length fluctuation then acts as a broadband noise source
whose Fourier spectrum modulates the laser carrier fre-
quency, resulting in a linewidth broadening. While the air-
borne acoustic perturbations can be attenuated effectively by
evacuating the chamber housing the cavity, coping with seis-
mic vibrations poses technical challenges. With elaborate vi-
bration isolation, the Bergquist group at NIST realized a sub-
hertz laser system ��1015 Hz� that is referenced to Fabry-
Perot cavities �4�. Nd:YAG and diode lasers stabilized to
cavities with passive or active vibration isolation have been
demonstrated �5,7,33�. Currently, passive or active isolation
systems can achieve vibration attenuations at Fourier fre-
quencies �1 Hz. It becomes more difficult and costly to con-
struct isolation systems with lower natural frequencies while
maintaining sufficient damping at these frequencies where
troublesome resonances can arise.

An alternative way of robust vibration resistance has also
been pursued �34�. By supporting the cavity vertically near
its midplane, a compact laser system with subhertz linewidth
has been experimentally demonstrated �6,15�. Rather than
focusing on the vibration attenuation, one installs the cavity
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in a particular configuration such that its critical dimension is
insensitive to the vibration-induced deformation, thus allevi-
ating the technical difficulty and cost inefficiency frequently
related to the vibration attenuation. We note that the
Bergquist group �35� and the PTB group �7� have also been
pursuing mounting strategies to minimize the vibration sen-
sitivity of Fabry-Perot cavities. In addition, possible mount-
ing methods have also been considered in Ref. �36�. These
ideas have stimulated interest in searching for other cavity
configurations that can relax the stringent demands for vibra-
tion attenuation.

In this paper, we explore various shapes and structural
supports of Fabry-Perot cavities, searching for designs that
reduce the sensitivity of the cavity length to the environmen-
tal vibration perturbations. A quantitative analysis of the
elastic deformation of Fabry-Perot cavities provides valuable
guidance for cavity design. To our knowledge, however, a
comprehensive investigation of the elastic deformation of
Fabry-Perot cavities at the modern precision level is not
available in the literature. Here we use finite-element analy-
sis �FEA� to perform a detailed numerical analysis of various
Fabry-Perot cavity configurations and to identify optimal de-
signs with improved vibration resistance. We show that such
an optimization is possible for cavities mounted vertically or
horizontally. In addition, a compounded cavity horizontally
mounted is proposed for a test of the Lorentz invariance.

To achieve the ultimate performance of a Fabry-Perot
cavity, considerable efforts have been taken to address a va-
riety of stability issues �4,37�. Notably, Numata et al. �38�
suggested that the length stability of present state-of-the-art
optical cavities begins to suffer from the thermal noise in the
cavity spacer and mirror substrates, as well as in the mirror
coating layers. The impact of the thermal noise on the cavity
performance has been evaluated �38� and experimentally
confirmed �39�. Cavity materials with low mechanical loss
and a proper design of low-loss mirror coatings help to re-
duce this noise. In addition, cryogenic cooling of the cavity
can reduce the thermal noise at the square root of the tem-
perature, but with added technical complexities. Constrained
by currently available mirror coatings and materials for cav-
ity and mirror substrate, optimizing the cavity geometry be-
comes a trade-off between vibration sensitivity and other
physical effects that favor a longer cavity. Indeed, a shorter
cavity would be better in terms of vibration resistance. How-
ever, frequency fluctuations arising from the birefringence of
mirror coatings and cavity thermal noise become proportion-
ally larger as the cavity length decreases. Besides, a longer
cavity has a smaller mode spacing and hence exhibits nar-
rower resonance linewidth for a given cavity finesse. A
proper design of cavity geometry and support is thus impor-
tant to allow achieving the required vibration immunity
while enjoying the benefits of a relatively long cavity.

This paper is organized as follows. First we introduce the
static analysis used in the numerical modeling, explaining
that the dynamic problem of the vibration perturbations can
be reduced to a static analysis �Sec. II�. We then present the
vibration sensitivities for cavities of various shapes and
mounting methods �Sec. III�. First, horizontally mounted cy-
lindrical cavities are discussed �Sec. III A�. Second, a verti-
cally supported tapered cavity is analyzed in detail �Sec.

III B�. We then return to the horizontal configuration, show-
ing that a reduced vibration sensitivity can also be achieved
for the cavities horizontally mounted �Sec. III C�. As an in-
dispensable step toward the experimental realization of vari-
ous mounting schemes, we also inspect the accuracy of the
numerical modeling and the stability of these cavity designs
�Sec. IV�. A summary and conclusion are provided at the
end.

II. STATIC ANALYSIS OF VIBRATION-INDUCED
DEFORMATION

In this section we first give a simple calculation of the
elastic deformation of a cylindrical cavity, which serves as a
background for our analysis of the cavity deformation. We
then introduce the static analysis used in our numerical mod-
eling. In addition, terminologies pertinent to the numerical
calculation and the accompanying discussion are defined and
explained in this section.

A. Elastic deformation

Figure 1�a� shows a cylindrical cavity with length L
standing on one of its ends, compressed vertically by gravity.
For the moment we neglect the coupling among different
directions due to the nonzero Poisson ratio. The fractional
length change of the cavity is

�L/L = − �gL/2E , �1�

where g is the gravitational acceleration, and � and E are the
mass density and the elastic modulus of the cavity material,
respectively. For a 10-cm cavity made from ULE, the change
in the optical length due to gravity is 1.6�10−8 �fractional�,
resulting in a frequency change of �10 MHz/g at 532 nm.
Clearly, a shorter cavity will be more insensitive to vibration
perturbations.

Generally the time-dependent vibration perturbation con-
sists of a broad spectrum, and only a partial surface area of
the cavity spacer is attached to its structural support. Under
such circumstances, one intuitively expects the need of a full
dynamic analysis of the cavity deformation. However, an
approximation can be made to greatly simplify the analysis:

(a) (b)

a
Gravity

FIG. 1. �Color online� Static analysis of cavity deformation. �a�
A cavity spacer vertically supported on one of its ends, with a force
of gravity acting on it. The structural support is fixed �indicated as
lines with multiple arrows�. �b� At low frequencies, the vibration-
induced cavity deformation can be analyzed with the cavity and the
structural support moving at a constant acceleration.
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At low vibration frequencies, the elastic deformation can be
analyzed with the cavity and the structural support moving at
a constant acceleration a, as shown in Fig. 1�b�. Furthermore,
this static acceleration can be replaced by a gravitylike force
�−ma� acting on the cavity and the structural support is then
fixed. Thus the dynamic problem is reduced to a static analy-
sis. The validity of this static analysis is discussed in the
following section.

B. Static analysis

Excited by the vibrating support, sound waves with vari-
ous frequencies propagate into all directions inside the cav-
ity. Those with low frequencies can have wavelengths much
longer than the dimension of the cavity, meaning that all
particles move in phase inside each eigenmode. Conse-
quently, the instantaneous strain �the compression or stretch
of a unit volume per unit length� distributions inside the
cavity closely resemble those resulting from a static force
that mimics the random acceleration frozen at that moment.
To see this more clearly, consider an elastic bar that deforms
only along its axis. The microscopic model of the elastic bar
can be simplified as a one-dimensional �1D� chain of simple
harmonic oscillators �SHO’s�, as shown in Fig. 2. At low
frequencies, all point particles in the SHO chain oscillate
nearly in phase when a driving force is applied to one of the
particles. As a result, all springs are equally compressed or
stretched at each moment and they contribute equally to the
total length change. The characteristic frequency below
which the static analysis is sufficient can be estimated using
the dispersion relation for an infinitely long SHO chain. This
dispersion relation connects the oscillating frequency of each
individual particle with the wavelength describing the collec-
tive movement of all particles in the SHO chain:

�2 =
4ks

m
sin2�1

2
ka� , �2�

where m, ks, and k=2� /� are the mass, spring constant, and
propagation constant, respectively. Taking the continuum
limit gives the familiar dispersion relation for a solid mate-
rial:

� =�E

�
k . �3�

Using ULE as an example, Eq. �3� indicates that for f
=� /2�	35 kHz, ��10L, where L is the dimension of the
material in the propagation direction of the sound wave. This
derivation only gives an order-of-magnitude estimate of the
characteristic frequency whose exact value depends on the

details of the cavity geometry and couplings among various
directions. However, in the analysis of the vibration sensitiv-
ity only low-Fourier-frequency components �
100 Hz� are
of interest because higher-frequency components can be ef-
fectively attenuated by traditional vibration isolation. At
these low frequencies the static analysis is a reliable substi-
tute for the full dynamic analysis.

C. Strain, displacement, and constraint in FEA

Once the dynamic problem is reduced to a static analysis,
we use FEA to quantitatively investigate the elastic deforma-
tion of the Fabry-Perot cavity. Here we introduce the termi-
nology used in FEA and in our discussions of numerical
results. Figure 3�a� sketches the deformation and displace-
ment of an object under the influence of some external force.
P and p denote the locations of a point before and after the
deformation, respectively. Along axis i, the displacement of a
point P is defined as

ui�X� = xi − Xi, �4�

where x � X� denotes the coordinates of a point on the object
with �without� the deformation. To detect the displacements
of the mirror surfaces in an axial cross section, we place two
sets of probe points on the two mirrors, as indicated by solid
dots in Fig. 3�b�. The change of optical length between two
mirrors can be determined from the differential displacement
of these two sets of probe points.

m ks
... ...... ...

a

FIG. 2. One-dimensional chain of simple harmonic oscillators.
At low frequencies, all point particles oscillate nearly in phase and
all springs are equally compressed or stretched. m and ks are the
mass and spring constant, respectively.

Probe
points

Probe
points

(b)

X1, x1

X2, x2

X3, x3

Undeformed

Deformed

P'(Xi+∆Xi)

P(X i)
ui

(a)

p(xi)

p'(xi+∆xi)

FIG. 3. �Color online� Strain and displacement in FEA. �a� Un-
der the influence of an external force, an object is both deformed
and displaced. The strain measures the fractional length change of
an infinitesimal distance PP�. The displacement of a point P is
defined as ui=xi−Xi. �b� The probe points �solid dots� on the cavity
mirrors in an axial cross section. On each mirror the probe points
span the whole diameter of the center optical hole of the cavity
spacer and are evenly distributed.
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The numerical calculations are performed with FEA pack-
ages COSMOSWORKS and ANSYS. The material of the cavity is
chosen as ULE �mass density, 2.21�103 kg/m3; elastic
modulus, 6.67�1010 N/m2; Poisson’s ratio, 0.17�. In the
calculation we apply a gravitylike force on the cavity, with
directions either in the vertical or in the horizontal plane.
Although the magnitude of the acceleration can be arbitrarily
chosen because the deformation is linearly scaled with it, we
use g=9.8 m/s2 throughout the paper for the convenience of
making direct comparisons among various configurations. In
these analyses, either the structural support or the supporting
surface of the cavity is restrained in a certain manner to
prevent the mechanical structure from translational and rota-
tional movements. Different mesh sizes are used in the nu-
merical modeling to examine potential errors introduced by
the finite mesh size.

III. RESULTS FOR VARIOUS CAVITY SHAPES AND
MOUNTING METHODS

This section presents numerical results for cavities of
various shapes and mounting methods. The discussions are
organized into three parts. First we investigate cavities hori-
zontally supported, a configuration that is widely used. We
then perform detailed calculations for a tapered cavity verti-
cally supported. The change in the cavity length is investi-
gated with a force of gravity applied either in the vertical or
in the horizontal directions. For the vertically supported ta-
pered cavities, effects such as different taper angles are also
discussed. In the third part, we return to cavities horizontally
mounted, showing that with properly designed structural
support, it is feasible to achieve a similar level of vibration
insensitivity observed in the vertical mounting method.

A. Horizontal mounting

Horizontal mounting is a common experimental configu-
ration in laser frequency stabilization. Typically, a cylindrical

cavity is supported by a V block or by two U-shaped brack-
ets. We explore these two cases by evaluating the mirror
displacement resulting from the elastic deformation of the
cavity. A similar analysis is also applied to a cavity with a
rectangular cross section. An example of cavity design for
testing Lorentz invariance is given at the end of this section.

1. Cylindrical cavity on a V block

Figure 4 shows a cylindrical cavity supported by a
V-shaped block and the numerical results obtained with
FEA. Indicated in the figure, a force of gravity is applied to
the cavity in the vertical direction and the bottom plane of
the V block is fixed. Figures 4�a� and 4�b� give the 3D view
and the dimension of the cavity, respectively. Figure 4�c�
plots the distribution of the displacements along the optical
�z� axis in an axial cross section. The elastic displacement
shown in Fig. 4�c� reveals that the two mirrors moves apart
from each other when the gravity is applied.

To evaluate the change of the optical length between the
two mirrors, we place probe points on the reflecting surface
of the mirror, as shown in Fig. 3�b�. On each mirror the
probe points span the whole diameter of the center hole and
are evenly distributed. Figure 4�d� plots the z-direction dis-
placements of the two mirrors sampled by the probe points
along the y direction. Not surprisingly, the distance between
the two mirrors increases because the cavity is compressed
vertically and hence it bulges in the horizontal directions.
The fractional length increase is 1.8�10−9 /g, corresponding
to a frequency excursion of �1 MHz/g at 532 nm. Also note
that the two mirrors are tilted slightly from the y axis be-
cause the lower portion of the cavity bears more weight load.

2. Cylindrical cavity on two U-shaped brackets

In the preceding example the bending of the cavity spacer
is restricted by the structural support that extends the whole
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FIG. 4. �Color online� Cavity on V block. �a�
Three-dimensional view of the cavity and its sup-
port. �b� Dimension of the cavity. �c� Distribution
of the displacement along the z axis in an axial
cross section. �d� Displacements at various trans-
verse positions �along the y axis� on the reflecting
surface of the mirror. The origin of the horizontal
axis denotes the center of the mirror. The frac-
tional length increase is 1.8�10−9 /g, corre-
sponding to a frequency excursion of �1 MHz/g
at 532 nm.
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length of the cavity. Here we relax this restriction to inves-
tigate the effect of cavity bending on the mirror displace-
ment. Figure 5 shows a cylindrical cavity supported by two
U-shaped brackets. Figures 5�a� and 5�b� give the 3D view
and the dimension of the cavity, respectively. A force of
gravity is applied to the cavity in the vertical direction, and
the bottom planes of the brackets are fixed. Figure 5�c� plots
the distribution of the displacement along the optical �z� axis
in an axial cross section. The elastic displacement shown in
Fig. 5�c� reveals that, for the current positions of the two
brackets shown in Fig. 5�b�, the two mirrors move apart from
each other and are tilted due to gravity. Definitely the mirror
displacement depends on the positions of two brackets.

Mirror displacements are calculated with different values
of d indicated in Fig. 5�b�. Figure 6 plots three typical results
with d=5, 15.2, and 21.1 mm. Figure 6�a� represents the
situation in which the supporting positions are close to the
two ends of the cavity spacer. In this case, the central portion

of the cavity spacer is bent downward because of gravity and
the two ends are warped upward, resulting in a relatively
large mirror tilt. When two supporting brackets are moved
toward the middle, the weight load is redistributed in the
cavity spacer. As a result, the bending around the middle of
the spacer is alleviated and hence the mirror is less tilted, a
situation that is quantitatively illustrated in Fig. 6�b�. Inward
further, there exists a balanced position at which the two
mirrors are parallel to each other, independent of the vertical
accelerations. The mirror displacement at this balance pivot,
known as the Airy point, are shown in Fig. 6�c�. As the two
brackets pass the Airy point and move further toward each
other, the two mirrors incline to the opposite direction, with
increasing tilting angles. When supported at the Airy point
�Fig. 6�c��, the fractional length increase is 2�10−9 /g
�1 MHz/g at 532 nm�, which is very close to the vibration
sensitivity of the V-block mounting.

The two mounting configurations discussed here concern
cavities supported horizontally from the bottom. In this hori-
zontal mounting configuration the vertical compression of
the cavity induced by the gravitational pull is coupled to
horizontal directions, leading to horizontal expansion and
hence elongation of the optical length. In the case of
U-bracket mounting the tilt of the two mirrors also modifies
the optical length, as inferred from Fig. 6. Nevertheless, the
gravity-induced cavity elongation still remains a perfor-
mance limitation even when the cavity is supported at the
Airy point. The effect of mirror tilt is negligible for a cavity
directly resting on a V-shaped block because the bending of
the spacer is drastically reduced. One solution not plagued
by the horizontal coupling effect is to align the optical axis
along the direction of gravity and to reshape the gravity-
induced cavity deformation. This vertical mounting configu-
ration is discussed in the following section.

B. Vertical mounting

We showed in Sec. II A that a cavity vertically supported
on one of its ends is compressed due to gravity. Now con-
sider a cavity vertically supported at its midplane. Qualita-
tively, both the top half and the bottom half of the cavity
move downward by the same amount because of the gravity,
leading to a cavity length that is insensitive to vertical accel-
erations. To quantitatively demonstrate this cancellation ef-
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FIG. 5. �Color online� Cavity on U-shaped brackets. A force of
gravity is applied to the cavity in the vertical direction and the
bottom planes of the brackets are fixed in the numerical modeling.
�a� Three-dimensional view of the cavity and its support. �b� Di-
mension of the cavity. �c� Distribution of the displacement along the
z direction in an axial cross section.
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FIG. 6. �Color online� Mirror displacements
of a cylindrical cavity supported horizontally by
two U-shaped brackets. The horizontal scale rep-
resents the transverse position �along the y axis�
on the reflecting surface of the mirror, with the
origin denoting the center of the mirror. See Fig.
5 for coordinate system. �a�, �b�, and �c� corre-
spond to d=5, 15.2, and 21.1 mm, respectively.
When the cavity is supported at the Airy point, as
shown in �c�, the two mirrors are parallel to each
other and the corresponding fractional length in-
crease is 2�10−9 /g �1 MHz/g at 532 nm�.
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fect, we numerically model a tapered cavity vertically sup-
ported near its midplane. This numerical modeling also
provides valuable guidance for the optimization of the sup-
porting position. Additionally, we examine the mirror dis-
placement due to horizontal accelerations in the vertical
mounting method.

1. Tapered cavity

Materials around the rims of a cylindrical spacer contrib-
ute less to the structural stiffness, and sometimes they are
removed in the process of machining. Figure 7�a� shows
such a tapered cavity with a flange at the middle for vertical
support. As shown in Fig. 7�b�, three sets of mounting holes
are drilled in the flange and they are evenly distributed on a
circumference. Each set of these mounting holes consists of
two concentric holes with different diameters. The upper
mounting holes �those with a smaller diameter� add the flex-
ibility of vertical suspension with thin wires, but are not

imperative for the current analysis. The horizontal surfaces
�Fig. 7�b�� inside the holes are used as supporting surfaces
and are vertically constrained in the calculation.

Figures 7�c� and 7�d� display the strain and displacement
of the cavity along the vertical direction in an axial cross
section, respectively. The compression and stretch of the ma-
terial are illustrated by the nearly antisymmetric distribution
of strain �Fig. 7�c�� with respect to the midplane. Similarly,
the symmetric distribution of displacement �Fig. 7�d�� shows
that two mirrors move downward roughly an in qual amount.
To inspect this effect in detail, we plot the mirror displace-
ments in Fig. 8. Figure 8�a� shows the displacements of the
two mirrors with three supporting surfaces located exactly in
the midplane. Obviously, both mirrors move downward and
sag in the middle. The differential displacement in the central
region of the mirror is �0.007 nm, corresponding to a frac-
tional length change of �7�10−11/g ��40 kHz/g for opti-
cal frequency change at 532 nm�.
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FIG. 7. �Color online� Tapered cavity hori-
zontally mounted near its midplane. The optical
axis of the cavity is along the y axis. Three sets of
mounting holes are drilled in the middle flange.
�a� Three-dimensional view of the cavity �b� Di-
mension of the cavity. �c� and �d� are strain and
displacement distributions along the optical axis
in an axial cross section, respectively. The strain
distribution is antisymmetric with respect to the
midplane. The cavity length is insensitive to the
vertical acceleration because the two mirrors
move downward roughly in an equal amount.
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FIG. 8. �Color online� Mirror displacements for a tapered cavity vertically mounted. The horizontal scale represents the transverse
position �along the z axis� on the reflecting surface of the mirror, with the origin denoting the center of the mirror. �a� The cavity is supported
at the midplane. Both mirrors move downward and sag in the middle. The mounting holes on the flange add structural weakness to the lower
half of the cavity spacer, resulting in a residual length change of �0.007 nm ��7�10−11/g, fractional or �40 kHz/g, optical frequency
change at 532 nm�. �b� Supporting surfaces moved downward �2.3 mm� to compensate for the structural weakness in the lower half of the
cavity flange, resulting in nearly identical movements of the two mirrors and a zero length change.

CHEN et al. PHYSICAL REVIEW A 74, 053801 �2006�

053801-6



The residual length change shown in Fig. 8�a� can be
further reduced. As shown in Fig. 7�b�, weight-bearing sur-
faces are formed by drilling holes in the flange, which in-
duces extra deformations in those regions around the mount-
ing holes. Accordingly, the supporting surfaces can be moved
downward to compensate for the weakened structure near the
support. Indeed, a full compensation can be achieved when
the surfaces are lowered 2.3 mm away from the midplane.
Figure 8�b� shows the mirror displacement with optimized
supporting surfaces. Alternatively, reducing the hole size can
achieve the same result, but will tighten the position toler-
ance of the holes on the flange.

2. Tapered cavity with different angles

With the high resolution provided by FEA, various design
factors can be numerically modeled prior to the experiments.
As an example, here we show the numerical analysis for
cavities with different taper angles. Three taper angles are
chosen and the cavities are supported at the midplane. The
supporting surfaces are fixed only in the vertical direction
when the acceleration is applied downward, but are con-
strained in all directions when the acceleration is in the hori-
zontal. For comparison, the areas of the two end surfaces and
the outer diameter of the flange are fixed while the taper
angle is varied. Figure 9 summarizes the numerical results.
Each row in the figure plots mirror displacements for a cer-
tain taper angle �indicated in the figure�. In each row, left and
right panels show displacements under vertical and horizon-
tal accelerations, respectively. In the case of vertical accel-

eration �Figs. 9�a�, 9�c�, and 9�e��, cavities with large taper
angles exhibit relatively large residual changes in optical
length. Note that in Figs. 9�a� and 9�c�, regions with the
largest vertical sag are shifted away from the central region
of the mirrors, though the three supporting holes are sym-
metrically located on the flange. As the acceleration is
switched to the horizontal direction, pointing toward the left,
two mirrors are tilted due to the bending of the spacer. For
the cylindrical cavity �Fig. 9�f��, the tilting angles of two
mirrors are nearly one order of magnitude larger than those
of tapered cavities �Figs. 9�b� and 9�d��. Also note that in
Figs. 9�b� and 9�d�, two mirrors exhibit unequal tilting angles
because of the structural weakness induced by the holes on
the lower half of the flange.

C. Improved horizontal mounting schemes

Thus far we have examined cavities mounted either hori-
zontally or vertically. The distance between two mirrors in
cavities mounted vertically can be made considerably insen-
sitive to vertical vibrations. For cavities horizontally sup-
ported from the bottom with strong restrictions on the bend-
ing of the cavity spacer, vertical compression is unavoidably
accompanied by horizontal expansion due to the nonzero
Poisson ratio. Consequently, the similar vibration insensitiv-
ity realized in the vertical cavities is generally not seen in
their horizontal counterparts. Nevertheless, horizontal cavi-
ties with vibration immunity are strongly favored in several
important experiments. One example is the test of Lorentz
invariance �Michelson-Morley �MM� experiment� in which

FIG. 9. �Color online� Mirror displacements
of cavities with different taper angles. The hori-
zontal scale represents the transverse position
�along the z axis� on the reflecting surface of the
mirror, with the origin denoting the center of the
mirror. Cavities are supported in the midplane.
Taper angles and accelerations are indicated in
the figure. Left panels �a�, �c�, and �e�: vertical
acceleration. Right panels �b�, �d�, and �f�: hori-
zontal acceleration pointing to the left. Each row
of two panels is for a certain taper angle. Vertical
acceleration induces relatively large residual
length change in cavities with large taper angles.
For horizontal acceleration, the tilting angles of
two mirrors in cylindrical cavity �f� are nearly
one order of magnitude larger than those of ta-
pered cavities ��b� and �d��.

VIBRATION-INDUCED ELASTIC DEFORMATION OF… PHYSICAL REVIEW A 74, 053801 �2006�

053801-7



the optical resonance frequencies of two orthogonal cavities
are alternately probed �40–42�. The remainder of this section
scrutinizes various supporting positions that can lead to im-
proved vibration insensitivity in the horizontal cavities.

1. Rectangular-bar cavity supported underneath

Bending of the cavity spacer can affect the distance be-
tween the two mirrors. Here we explore this degree of free-
dom, using a cavity made from a rectangular bar and sup-
ported from the bottom by two beams. Figure 10 gives the
dimensions of the cavity and the supporting beams. In our
numerical modeling the height of the beam is fixed at 5 mm
while two parameters are adjusted: namely, the location d
and the width w of the beam.

Figure 11 plots the mirror displacements for six combina-
tions of d and w �values indicated in the figure�, which cover
three typical widths of the supporting beam. At each w, three
results with increasing values of d are plotted and arranged
in the figure as a row of three panels. For a given w, we find
the Airy point at which the parallelism of the two mirrors is
obtained �middle panel of each row in Fig. 11�. Interestingly,

with a specific combination of d and w, the cavity length
responds insensitively to the vertical accelerations while the
two mirrors remain parallel to each other, as shown in Fig.
11�e�. When w changes from 3 mm to 10 mm, the differen-
tial displacement between the two mirrors reverses sign. The
same sign reversal also happens when w is fixed at 4.41 mm
and the supporting beams move from one side of the Airy
point to the other.

We attribute these phenomena to the combined effect of
gravity-induced vertical compression and bending of the cav-
ity spacer. The weight load between two supporting beams
bends the middle of the spacer downward, inducing stress
components along the optical axis of the cavity. These stress
components point to the center of the cavity and hence tend
to decrease the cavity length. The counteracting stress com-
ponents are also present in the cavity spacer because of the
warp of the two cavity ends and because of the gravity-
induced vertical compression. With a combination of w
=4.41 mm and d=53.62 mm, various length-changing ef-
fects are exactly balanced out and the cavity length is insen-
sitive to vertical accelerations, as shown in Fig. 11�e� �43�.
Using this favored geometry we remeasure the displacement
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FIG. 10. �Color online� Cavity made from a rectangular bar and supported by two beams. The cavity has a cross section of 76.2 mm
�50.8 mm and a length of 270 mm, which is different from other 100-mm cavities discussed in this paper. d and w are varied in the
numerical analysis to inspect the mirror tilt and displacement along the optical �z� axis at various mounting positions. �a� Three-dimensional
view of the cavity and its support. �b� Dimension of the cavity. �c� Cavity deformation and the distribution of the strain along the z axis in
an axial cross section. Note that the deformation has been amplified by a factor of 5�106.
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FIG. 11. �Color online� Mirror displacements
of a cavity made from a rectangular bar and sup-
ported by two beams with different widths and
positions �w and d indicated in the figure�. The
horizontal scale represents the transverse position
�along the y axis� on the reflecting surface of
the mirror, with the origin denoting the center of
the mirror. See Fig. 10 for coordinate system.
�a�–�c� w=3 mm. �d�–�f� w=4.41 mm. �g�–�i�
w=10 mm. For a given beam width w, the Airy
point can be found where the parallelism of the
two mirrors is obtained ��b�, �e�, and �h��. When
w=4.41 mm and d=53.62 mm �e�, the cavity
length responds insensitively to the vertical accel-
erations while the two mirrors remain parallel to
each other.
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of the mirror along two orthogonal axes and plot the result in
Fig. 12 with enlarged vertical scale �cf. Fig 11�e��. Obvi-
ously, the vibration sensitivity can be further reduced by it-
erative adjustments of w and d. When w is fixed at 4.41 mm
and d is changed from 52.42 mm to 54.82 mm �Figs. 11�d�
and 11�f�, respectively�, the weight load between the two
beams decreases, resulting in diminished length-contraction
stress components and hence a net increase of the cavity
length in addition to the mirror tilt. This effect is clearly
demonstrated by the mirror displacements shown in Figs.
11�d� and 11�f�.

The change in cavity length �L is also inspected in a
broad range of the width w. At each w we first adjust d to
ensure the parallelism of the two mirrors and then obtain �L
by taking the differential displacement of the two mirrors.
Figure 13 shows the trend of �L as w is varied from
3 mm to 135 mm. The rightmost data point �w=135 mm�
represents the situation in which the bottom of the cavity is
fully supported by a flat plate. In this case the cavity is elon-
gated because of the gravity-induced vertical compression.

When w is within �outside� the range of 4.4 mm	w
	55.4 mm, the cavity is shortened �elongated�. Note that,
for the cavity geometry and the beam height we choose,
there are two widths �w=4.4 and 55.4 mm� at which the
cavity length is insensitive to vertical accelerations.

Unfortunately, such a favorable combination of the width
and location of the supporting beams is not ubiquitous in
cavities made from rectangular bars with different dimen-
sions. For example, numerical calculation shows that opti-
mized parameters do not exist for a similar cavity with a
length of 100 mm. Compared with the 270-mm cavity, this
shortened cavity has an increased stiffness. As a result, the
limited bending of the cavity spacer cannot fully compensate
the horizontal extension resulting from gravity-induced ver-
tical compression.

2. Cavity with supporting height optimized

As illustrated in Sec. III A 1, a horizontal cavity resting
on its bottom is elongated because of vertical compression,
whereas the same cavity suspended from the top contracts in
the horizontal direction. Supporting the cavity at a height in
between these two extremes can potentially suppress the
change of the optical length induced by vertical accelera-
tions. We investigate this possibility by using a rectangular-
bar cavity supported by four posts.

Figures 14�a� and 14�b� show the cavity with relevant
dimensions. Supporting the cavity at different heights is
made possible by drilling four blind holes on the bottom of
the cavity spacer. In the numerical modeling, we first find the
Airy point such that the two mirrors are always parallel to
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FIG. 12. �Color online� Mirror displacements of a horizontal
cavity �Fig. 10� with optimized structural support �w and d indi-
cated in Figs. 11�d� and 11�e��. The displacements are measured
along the x and y axes on the reflecting surface of the mirror �see
Fig. 10 for coordinate system�. The origin of the horizontal scale
denotes the center of the mirror.
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FIG. 13. �Color online� Change in cavity length as a function of
the width of the supporting beam. The spacer of the cavity is a
rectangular bar. The cavity is supported by two beams �see Fig. 10�.
The beam height is fixed at 5 mm in all calculations. �L at each w
is obtained with cavity supported at corresponding Airy point. At
two widths �w=4.4 and 55.4 mm� �L is insensitive to vertical ac-
celerations. The cavity is shortened in the range of 4.4 mm	w
	55.4 mm, but is elongated outside this range. The rightmost data
point �w=135 mm� represents the situation in which the bottom
area of the cavity is fully supported by a flat plate.
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FIG. 14. �Color online� Cavity made from a rectangular bar and
supported by four posts. Supporting cavity at different heights is
made possible by drilling four blind holes on the bottom of the
spacer. In the numerical modeling the location and the depth of the
supporting holes are varied to lower the vibration sensitivity and to
ensure the parallelism of the two mirrors. �a�, �b� Relevant dimen-
sions. �c� Distribution of the displacement in an axial cross section.
�d� Mirror displacements along the z axis after the optimization of
the depth and the location of the mounting holes. The horizontal
scale represents the transverse position �along the y axis� on the
reflecting surface of the mirror, with the origin denoting the center
of the mirror.
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each other despite the vertical accelerations. However, a re-
sidual change in optical length is usually present after this
adjustment. We subsequently vary the depth of the holes to
reduce this length residual. The process is iterated until both
the parallelism of the mirrors and the cancellation of the
mirror displacements are simultaneously obtained. Figure
14�d� gives the mirror displacements after the optimization
of the location and the depth of the mounting holes.

D. Cavity design for testing Lorentz invariance

Based on the analysis of the horizontally mounted linear
cavities, we introduce a cavity design for the test of Lorentz
invariance in the photon sector of the standard model exten-
sion �SME� �44,45�. In electrodynamics the test has been
performed with modern versions of the Michelson-Morley
experiments using room-temperature optical cavities �40�,
cryogenic sapphire optical resonators �41,42�, and cryogenic
microwave oscillators �46,47�. In a typical experiment the
resonant frequencies of two orthogonal cavities are continu-
ously compared as they either move along with the rotation
of the Earth or are actively rotated on a laboratory horizontal
platform.

The horizontal mounting scheme introduced in the pre-
ceding section can be simultaneously applied to two orthogo-
nal directions. Figure 15 shows a cavity designed for this
purpose. The spacer has through holes for two optical axes
that are perpendicular to each other. Four high-reflection mir-
rors are attached to the side faces of the spacer, forming two
orthogonal cavities in the horizontal plane. For a given di-
ameter of the supporting holes, the depth of the holes and

their horizontal positions are varied until an optimization in
two orthogonal directions is obtained. Figures 15�d� and
15�e� show respectively the mirror displacements along the x
and y axes after the optimization �48�. Clearly, vibration re-
sistance in both directions is attainable. In fact, a third cavity
in the z axis can also be added and the vibration resistance
can be achieved in all three directions with the aid of another
degree of freedom—the diameter of the holes.

Several potential advantages are associated with this com-
pounded cavity. The vibration immunity of the cavity will in
general reduce the high-frequency noise superposed on the
signal obtained from long-term measurements based on the
Earth’s rotation. Moreover, the compact system introduced
here is well suited for active-rotation experiments. These ex-
periments operate at relatively high modulation frequencies
compared with the Earth’s rotational and orbital frequencies,
thereby taking advantage of the short-term stability of optical
local oscillators �10–100 s�. In active-rotation mode, it is
possible that the rotation frequency can be comparable with
low Fourier frequencies �
1 Hz� in the vibration spectrum.
These low-frequency components find their way more easily
to the cavity and develop noise sidebands close enough to
the carrier to be picked up by the detection bandwidth. The
vibration immunity of the cavity will help to suppress this
seismic interference and other spurious signals arising from
the periodical perturbations from the rotation. In addition,
the double-cavity-in-one-piece configuration can possibly of-
fer improved common-mode rejection of the thermal drift
and isotropic material creep �49�. These preferred features, if
realized, are crucial for long-term measurements that search
for Lorentz-violating signals modulated by the Earth’s rota-
tional and orbital movements.

However, for this design to be implemented in active-
rotation mode, special cautions must be exercised. Jitters of
centrifugal acceleration can induce unequal stretches of the
two cavities, which in turn modulate the frequency differ-
ence. This perturbation can possibly be alleviated by center-
ing the cavity on the rotation stage and by using a narrow
detection bandwidth at twice the angular frequency. An ac-
tive control of the rotational speed may also be used to level
off the centrifugal stretch. The tilt of the rotation stage can
also modulate the frequency difference, contaminating the
signal at twice the rotation frequency �46�. In addition to the
leveling of the rotation stage, one can further optimize the
geometry of the compounded cavity and its support to reduce
the vibration sensitivity both in the vertical and horizontal
planes.

IV. ACCURACY OF NUMERICAL ANALYSIS

Because extremely small displacements are involved in
the numerical modeling of cavities, designs based on these
analyses must be carefully checked prior to their experimen-
tal implementation. The error can arise from the calculation
itself or may be caused by limited knowledge of the initial
conditions such as the material properties and the contact
between the cavity and the structural support. In this section
we consider, from a computational perspective, major factors
that can potentially affect the accuracy of the numerical
modeling.
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FIG. 15. �Color online� A compound cavity designed for the test
of Lorentz invariance. �a� Three-dimensional view of the cavity and
its support. �b� Top view. �c� Side view. Two holes perpendicular to
each other are bored through the cavity spacer. High-reflection mir-
rors are attached to the end surfaces, forming two orthogonal cavi-
ties. Vibration insensitivity along the x and y axes is obtained by
adjusting the depth and the position of the four mounting holes. �d�
and �e� show mirror displacements, respectively, along the x and y
axes after the optimization. The horizontal scale represents the
transverse position �along the z axis� on the reflecting surface of the
mirror, with the origin denoting the center of the mirror.
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A. Mesh size

Mesh size is one of the major parameters in FEA that
affect the accuracy of the numerical modeling, especially in
dealing with extremely small displacements ��10−11, frac-
tional�. A small mesh size is preferred in order to obtain the
required resolution and accuracy, but reductions in mesh size
are limited by computing resources and often lead to an ex-
cessive amount of computing time. To evaluate the potential
errors introduced by using finite mesh sizes, we perform cal-
culations for the same cavity but with different mesh sizes.
As an example, Fig. 16 plots mirror displacements for a ta-
pered cavity with two different mesh sizes �1 and 3 mm�. To
take advantage of the geometrical symmetry, only one-third
of the cavity is modeled �see the inset of Fig. 16�. The two
results in Fig. 16 indicate that the magnitude of the displace-
ment of each mirror can change for different mesh sizes but
the differential displacement is nearly unaffected by the
mesh size. Additional calculations on various cavities con-
firmed this observation.

B. Constraints of supporting surfaces

In the static analysis the structural support is constrained
to prevent the translational and rotational movements of the
mechanical structure. As an example, consider the tapered

cavity introduced in Sec. III B 1. The supporting surfaces can
be fixed in all three directions, or they can move freely in the
horizontal plane. In the numerical modeling, these two dif-
ferent constraints lead to a fractional change of 2�10−10 in
the optical length between the two mirrors. Restriction only
in the vertical direction is more close to the practical situa-
tion where the cavity rests on three posts but is not bonded to
them. Nonetheless, this vertical restraint is only an ideal case
that cannot fully describe the real contact between the cavity
and the supporting surface.

We perform two additional diagnostic calculations to
identify potential errors that can arise from the contact prob-
lem. The first one models the tapered cavity supported by
three aluminum posts whose end surfaces are bonded to the
cavity. Subsequent calculation is performed with a soft layer
�indium� inserted between the cavity and each aluminum
post. In the second configuration, the shear deformation of
the soft layer partially simulates the sliding between two
contacting surfaces. A comparison between these two calcu-
lations helps to resolve the ambiguity arising from the sliding
between the cavity and the aluminum posts in a real contact
problem. Figure 17 shows the mirror displacements with and
without the soft layers between the contacting surfaces. With
the indium layers added, the mirror displacement increases
by 4�10−9 /g �fractional�, but the differential displacement
varies by only �2�10−11/g �fractional�, suggesting a negli-
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gible effect of the sliding between two contacting surfaces.
In the future, FEA packages with sophisticated tools for in-
vestigating contact problems will lead to an improved accu-
racy and confidence in the cavity design.

C. Material properties and machining tolerance

Material properties of cavities can possibly deviate from
their nominal values. For a cavity design intended for vibra-
tion immunity, a hypersensitive dependence on the material
properties will render the experimental implementation im-
possible. To examine the stability of the numerical modeling,
we repeat the calculations with deliberately varied material
properties such as the elastic modulus, the Poisson ratio, and
the mass density. These parameters are typically varied by
5% in the calculation, and we find that a vibration sensitivity
below �7�10−11/g can still be achieved. Consequently, op-
timized supporting positions for vibration resistance are at-
tainable despite a modest spread of the material properties
that can arise from the fabrication process or from fluctua-
tions of the ambient temperature.

Various dimensional changes can potentially undermine
the optimized cavity design. We perform a series of calcula-
tions using modified cavity dimensions to account for the
typical manufacturing tolerance. For the tapered cavity intro-
duced in Sec. III B, its vibration sensitivity is below 1
�10−11/g at the nominal length. We shorten the top part of
the cavity by 0.5 mm, and this dimensional modification re-
sults in a vibration sensitivity of 6�10−11/g, which is still
about 30 times smaller than that of a horizontal cavity sup-
ported from the bottom. The allowed tolerances for other
crucial dimensions are also determined in a similar manner
for a given design goal. In addition, the optimized location
and the depth of the mounting holes obtained for the tapered
cavity are also verified against position errors that can poten-
tially arise from machining of cavities.

V. SUMMARY AND CONCLUSION

FEA is used to quantitatively analyze the elastic deforma-
tion of Fabry-Perot cavities with various shapes and mount-
ing configurations. At low vibration frequencies, a static
analysis of cavity deformations can be adopted to simplify
the numerical modeling. Vibration-induced fluctuations in
cavity length are closely examined for several experimental
configurations, which include a horizontally mounted cylin-
drical cavity, a tapered cavity vertically supported near its
midplane, and two horizontal cavities with modified mount-
ing configurations. By vertically supporting the cavity near

its midplane, the influence of vibration on the cavity length
can be reduced. Similar vibration resistance can also be re-
alized in horizontal cavities by adjusting the related struc-
tural supports. This latter observation facilitates a cavity de-
sign for the test of Lorentz invariance. The accuracy and
feasibility of experimental realization of these mounting
schemes have also been discussed.

Considering the diversity of the geometry, installation,
and application of Fabry-Perot cavities, it is impossible to
cover them all in a single article here. Fortunately, some
general observations can still be distilled. Both vertically and
horizontally mounted cavities can be optimized such that
their critical dimensions can be protected from vibrational
perturbations through a careful design of the geometry and
the related structural support. The vibration sensitivity of
vertical cavities can be reduced by two orders of magnitude
with controlled machining tolerance �0.1−0.2 mm�. Opti-
mized horizontal cavities exhibit similar vibration immunity,
but may demand a tighter machining and mounting toler-
ance. Horizontal vibrations induce nearly symmetrical mirror
tilt without additional cavity elongation in vertical cavities,
but their influence on the horizontal cavities should be ex-
amined in detail for each specific design. For both vertical
and horizontal configurations, further improvements are pos-
sible by imposing tighter tolerances on relevant dimensions
and by experimentally fine-tuning the mass distribution �6�.

Because of the reduced vibration sensitivity via proper
design of the cavity geometry and mounting scheme, one can
choose a cavity length that minimizes other noise contribu-
tions such as from the thermal noise and birefringent noise
�50� of the mirror coating. This is especially important for
cavity design under the constraints of currently available
cavity materials and mirror coatings. The horizontal and ver-
tical mounting schemes discussed in this paper can be
adopted, perhaps with necessary modifications, by various
systems such as cryogenic optical resonators and those in-
tended for space-based experiments.
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