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Characterization of the molecular iodine
electronic wave functions and potential energy

curves through hyperfine interactions
in the B0u
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We present a high-resolution analysis of the six electronic states that share the same dissociation limit with
the second excited electronic state B in molecular iodine. These six states are coupled to the B state via hy-
perfine interactions. The four hyperfine parameters, CB, �B, dB, and eqQB, are calculated with the available
potential energy curves and wave functions constructed from the separated-atom basis set. We obtain a maxi-
mum separation of the respective contributions from all six electronic states and compare each individual con-
tribution with high-precision spectroscopic data, providing an independent verification of the relevant elec-
tronic structure. © 2005 Optical Society of America
OCIS codes: 020.2930, 300.6390, 300.6460, 300.6190.
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. INTRODUCTION
omprehensive and high-precision measurements on hy-
erfine spectra in the B←X system of molecular iodine
rovide a unique opportunity for a detailed examination
f the molecule’s electronic structure relevant to the sec-
nd dissociation limit, 2P3/2+2P1/2. Molecular iodine is a
are case in that the hyperfine spectra in the B←X sys-
em have been recorded not only with high precision at
he kilohertz level but also for a large set of rovibrational
evels, extending from ��=2 to just below the dissociation
imit ���=82� in the excited B0u

+�3�u� electronic state.1–17

recise empirical–interpolation formulas have been de-
eloped to describe the hyperfine interaction.2,3 These in-
erpolation forms present a detailed frequency map for
recision measurements relying on the hyperfine spec-
rum of molecular iodine. The vibrational levels studied
over a broad range of internuclear separation, with R
entroid (Rc, the mean of internuclear separations
eighted by the B-state vibrational wave function) rang-

ng from approximately 3 to 12 Å. Because hyperfine in-
eractions can exert large influences on electronic struc-
ure, experimentally determined hyperfine parameters
ver a large range of Rc allow a sensitive test of the rel-
vant electronic wave functions and potential energy
urves.

Precise measurement of hyperfine interactions has
een applied to test several relevant electronic states, i.e.,
, B, and E in molecular iodine4,18–25 and in other di-
tomic molecules.26 In the case of the B0u

+�3�u� state in
olecular iodine, second-order contributions to the four

yperfine parameters, the electric quadrupole parameter
qQB, spin–rotation parameter CB, tensorial spin–spin
arameter dB, and scalar spin–spin parameter �B, have
een calculated for several vibrational levels ��
�

0740-3224/05/050951-11/$15.00 © 2
40–82� in the B state.4,18,19,22–24 In these analyses, the
olecular wave functions involved were constructed from
separated-atom basis set because the molecule spends
uch of its time at large internuclear separations for
igh-lying vibrational levels close to the dissociation

imit. The good agreement between the experimental data
nd these calculations justifies the separated-atom model
s a simple and effective tool in characterizing the elec-
ronic structure at large internuclear separations. None-
heless, there is room to extend this approach. First, the
ame calculation can be carried out with improved reso-
ution for vibrational levels lower than ���40 as well as
or the detailed rotational dependence in each vibrational
evel. This approach has become particularly relevant
iven the latest spectroscopic data with an extensive cov-
rage of vibrational and rotational dependence of the hy-
erfine interactions.16,17 In addition, detailed information
n the short- and intermediate-range �R�7 Å� potential
nergy curve (PEC) of the perturbing electronic state, ob-
ained either empirically or theoretically, was largely un-
vailable when these earlier calculations were performed,
nd therefore the property of the molecular wave function
f the corresponding electronic state could not be indepen-
ently inferred from these analyses. In contrast, with ad-
quate constraints on the PECs, a correct account of the
yperfine parameters permits either the determination of
he admixture of the basis wave functions in the
eparated-atom model or the verification of more sophis-
icated molecular wave functions.

In this paper, we extend the calculation of hyperfine pa-
ameters to low vibrational levels and to rotational de-
endence at each vibrational level, using electronic wave
unctions derived from the separated-atom basis set and
he related empirical or theoretical PECs. Our aim is to
005 Optical Society of America



t
r
e
o
e
I
i
f
r
w
s
t
t
t
e
t
M
e
r
s
c
h
f
h

s
H
t
s
f
s
t
c
F
m
t
o
(
a
w
p

2
T
B
t
s
h
v
t
i
o
a
s
c
H
t
t
H
t

r
t
t

e
t
l
w
t
e
t
t
e

A
T
f

w
�
n
l
l
n
W
p

w
V
e

h
i
b

w
J
t
s
t
c
s
t
h
(

w
f

952 J. Opt. Soc. Am. B/Vol. 22, No. 5 /May 2005 Chen et al.
ake advantage of our recently measured hyperfine pa-
ameters covering an extensive range of rovibrational lev-
ls near the dissociation limit16,17 and combine them with
ther published experimental data to test the PECs, the
lectronic wave functions, and the separated-atom model.
n doing so, we are able to quantitatively address several
ssues such as (1) to what extent the separated-atom wave
unctions can be extrapolated to small internuclear sepa-
ations, (2) the estimation of the admixture of the basis
ave functions in the separated-atom model, and (3) the

ensitivity of the dependence of hyperfine parameters on
he choice of PECs. For the spin–rotation parameter CB,
he calculated dependence on both vibrational and rota-
ional quantum numbers is in good agreement with the
xperimental data for ���42. Subsequently, the admix-
ure of the two 1u states is independently determined.
oreover, calculations of the other three parameters,

qQB, dB, and �B, place a stringent constraint on the long-
ange PECs of the relevant electronic states. Here we con-
ider the smooth second-order contributions. Thus the
alculation does not cover the abnormal variations of the
yperfine parameters around ��=57–60 and ��=76–78,

or which the existence of the strong hyperfine coupling
as already been analyzed in a great detail.4,16,23

In Section 2 we introduce the explicit form of the
econd-order contributions to the hyperfine parameters in
und’s case c coupling scheme, along with a discussion of

he PECs and the electronic wave functions in the
eparated-atom model. We present results for the four ef-
ective hyperfine parameters at various internuclear
eparations in Section 3. These results are discussed in
hree steps to demonstrate the maximum separation of
ontributions from different perturbing electronic states.
irst, a detailed analysis of CB is required for the deter-
ination of the admixture of the two 1u states. Then,

hrough the calculation of �B, contributions from the
ther two states (0u

− and 0g
−) are separated from the rest

two 1g states), and the corresponding long-range PECs
re tested. Finally, we present results for eqQB and dB,
hich are in part based on the information derived in the
revious two steps. Conclusions are provided in Section 4.

. THEORY
he hyperfine interaction, which is not included in the
orn–Oppenheimer molecular Hamiltonian, can couple

he B0u
+ state to several electronic states sharing the

ame 2P3/2+2P1/2 dissociation limit.27,28 Consequently, the
yperfine spectra of the X←B transitions are altered to
arious degrees depending on the coupling strength and
he energy differences between the B0u

+ and the perturb-
ng states. An effective Hamiltonian based on second-
rder perturbation theory was developed by Broyer et
l.28 to treat these couplings. Except for levels at which
trong coupling is present, perturbed hyperfine spectra
an generally be described by the effective hyperfine
amiltonian with high precision by use of the four effec-

ive hyperfine parameters, eqQB, CB, dB, and �B, ex-
racted from fitting the spectroscopic data to the effective
amiltonian. Moreover, second-order calculations of

hese parameters relate their experimental values to the
elevant PECs and the admixture of the basis wave func-
ions, imposing stringent constraints on the relevant elec-
ronic structure.

The detailed derivation of the matrix elements of this
ffective hyperfine Hamiltonian and the associated effec-
ive hyperfine parameters can be found in the
iterature.24,28 For clarity of the notation and discussion,
e provide an overview of this derivation before we list

he explicit expressions. Then we proceed to describe sev-
ral computational issues concerning the preparation of
he PECs, the electronic wave functions constructed from
he separated-atom basis set, and the electronic matrix
lements.

. Matrix Element of the Hyperfine Hamiltonian
he hyperfine Hamiltonian of the iodine molecule can be

ormally written as

Hhf = Hhf�a� + Hhf�b� + Hhf�a,b�, �1�

here a and b denote the two iodine nuclei and Hhf�a�
Hhf�b�� and Hhf�a ,b� represent the nucleus–electron and
ucleus–nucleus hyperfine interactions, respectively. The

ast term in the above Hamiltonian is left out in the fol-
owing discussion because it contains only nuclear coordi-
ates and thus cannot couple different electronic states.
ith the last term dropped, this Hamiltonian can be ex-

ressed in tensorial form:

Hhf = �
�=a,b

�
k

�
q=−k

k

�− 1�qQq
k�I��V−q

k �e��, �2�

here the rank-k spherical tensor operators Qk�I�� and
k�e�� act, respectively, on the nuclear spin I� and the
lectronic degrees of freedom.

Considering the strong spin-orbit interaction in this
eavy molecule, Hund’s case c coupling scheme at large

nternuclear separations is appropriate for the molecular
asis set, which we denote by

��� = ���JIFMF�, �3�

here � is the projection of the total angular momentum
onto the molecular axis connecting the two nuclei, � is

he vibrational quantum number, I is the total nuclear
pin, F=I+J, and MF is the projection of F onto a quan-
ization axis. Note that in the energy continuum, the dis-
rete level index � is replaced by a continuous energy
pectrum E. Averaging explicitly over the molecular rota-
ion in the laboratory frame gives matrix elements of this
yperfine Hamiltonian in terms of 3j (parentheses) and 6j
curly brackets) symbols and electronic matrix elements:

	���Hhf
k �a���� = �FF��MFMF�

�− 1�F+	I+2Ia+	J+k��2J� + 1�


�2J + 1��2I� + 1��2I + 1��1/2
 J� k J

− �� 	� �
�


�J� k J

I F I�� k Ia Ia

Ia I� I fk�a,��,�J�
� ,�,�J�,

�4�

here 	J=J�−J, 	I=I�−I, 	�=��−�, and
�a ,� ,�� ,� ,� � encapsulates the averaging over the
k � J� J
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lectronic motion in the molecular frame and the molecu-
ar vibration, which is written as

fk�a,��,�J�
� ,�,�J� = �− 1���

Ck


k Ia Ia

0 Ia − Ia
� 	���J� �V	�

k �a����J�.

�5�

ere C1=�NgIa
Ia is the nuclear magnetic dipole moment,

here �N is the nuclear magneton, gIa
is the Landé factor

or the iodine nucleus, and C2= 1
2eQIa

is the nuclear elec-
ric quadrupole moment with e the proton charge and QIa
efined as

QIa
= e	Ia,MIa

= Ia��
p

�3zp
2 − rp

2��Ia,MIa
= Ia�, �6�

here zp and rp refer to the coordinates of the protons p in
he iodine nucleus.

For ��0, the projection of the angular momentum J
nto the molecular axis can take either the positive or the
egative direction, a degeneracy that is lifted by the cou-
ling with external states. In this case the molecular
ave function is represented by24

���� = 
 1

�2
����

���,�JIFMF� + ��− �,�JIFMF��, �7�

here � can take on the values of 0 ��=0� and ±1 ��
0�. The net effect of this � doubling on the matrix ele-
ent 	���

� �Hhf
k �a����� is to replace the fk�a ,�� ,�J�

� ,� ,�J� de-
ned in Eq. (5) by


 1

�2
����+����

��1 + ����− 1�	J�fk�a,��,�J�
� ,�,�J�

+ C��+��� + ���− 1�	J�fk�a,��,�J�
� ,− �,�J��, �8�

here

C��+� =


 J� k J

− �� �+ − �
�


 J� k J

− �� 	� �
�

nd �+=��+�. Expression (8) is equivalent to Eq. (6) in
ef. 24 when ��0. For the case of the B0u

+ state, expres-
ion (8) is reduced to


 1

�2
�����

�1 + ���− 1�	J�fk�a,��,�J�
� ,0u

+,�J�. �9�

The matrix element for the second nucleus b is related
o that of the first nucleus a because of symmetry
onsiderations24,28:
	�u,I�
� �Hhf

k �b���u,I� = �− 1�	I	�u,I�
� �Hhf

k �a���u,I�,

	�u,I�
� �Hhf

k �b���g,I� = �− 1�	I+1	�u,I�
� �Hhf

k �a���g,I�, �10�

here the u �g� symmetry refers to the odd (even) elec-
ronic wave functions under reflection with respect to the
enter of the molecule. Another component capable of cou-
ling external electronic states to the B0u

+ state is the off-
iagonal part of the rotational Hamiltonian V0, defined as

V0 = −
�2

2�R2 �J+�L− + S−� + J−�L+ + S+��, �11�

here � is the reduced mass of two nuclei and R is the
nternuclear separation. It can couple only states with
�= ±1 and the same u �g� symmetry, and therefore the
0u

+ state is coupled by V0 to only two 1u states. The ma-
rix element of V0 between the B0u

+ state and such a 1u
tate with � doubling ���=1� is evaluated as

	V0� = 	1u,��=1�V0�0u
+�

= − �2J�J + 1��1/2
1

�2


��1u��� = 1�,�J�
� � �2

2�2�R2
�L+ + S+��0u

+�J�
+�1u�− ���,�J�

� � �2

2�2�R2
�L− + S−��0u

+�J��
= − �2J�J + 1��1/2�2


�1u��� = 1�,�J�
� � �2

2�2�R2
�L+ + S+��0u

+�J�
= − �2J�J + 1��1/2�2f0�1u,0u

+�. �12�

he factor �2 in the last line of Eq. (12) arises from the �
oubling of the 1u state.

. Second-Order Contributions to Hyperfine Parameters
ith the coupling matrix elements for V0, V1, and V2

iven in Subsection 2.A, the hyperfine parameters are cal-
ulated by second-order perturbation theory to include
he contributions from all rovibrational levels allowed by
he selection rules in each of the six perturbing states
C :1u, 1u, 1g�1�g�, 1g�3�g

−�, 0g
−�3�g�, and �3�0u

−]. In the deri-
ation of these parameters (see Appendix I in Ref. 28), a
eak J� dependence of fk�a ,�� ,�J�

� ,� ,�J� across neighbor-
ng rotational levels is assumed when the summation on
� is performed. However, to account for the � doubling,
ne must replace fk�a ,�� ,�J�

� ,� ,�J� defined in Eq. (5) with
xpression (9). In fact, this modification does not interfere
ith the just-mentioned assumption because the coupling

election rules for 	J=J�−J are different for ��= +1 and
1; hence their combined effect adds no extra J� depen-
ence to the modified fk�a ,�� ,�J�

� ,� ,�J�. After summa-
ions on I� and J� and reorganization of various terms ac-
ording to their angular momentum dependence, the
xplicit expressions for the four effective parameters are
btained and are listed below28:
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CB = CD −
4

�Ia�Ia + 1��2Ia + 1��1/2


 �
1u
��

��

f0�1u,0u
+�f1�a,0u

+,1u�

E0u
+�J − E1u��J

+
2

�

 �

2�2�1/2�
E0

�

dE1uJ

f0�1u,0u
+�f1�a,0u

+,1u�

�Eu�E00
+�J − E1uJ� � ,

�13�

�B = −
2

3Ia�Ia + 1��2Ia + 1�


�
��

�i�1 + �������
��

�f1�a,��,0u
+��2

E0u
+�J − E����J

+
2

�

 �

2�2�1/2�
E0

�

dE��J

�f1�a,��,0u
+��2

�Eu�E0u
+�J − E��J�� , �14�

dB = −
1

3Ia�Ia + 1��2Ia + 1�


�
��

�i�3��2 − 2��1 + �������
��

�f1�a,��,0u
+��2

E0u
+�J − E����J

+
2

�

 �

2�2�1/2�
E0

�

dE��J

�f1�a,��,0u
+��2

�Eu�E0u
+�J − E��J�� , �15�

eqQB = eqQ0 − 4�2�
1u
��

��

4f0�1u,0u
+�f2�a,0u

+,1u�

E0u
+�J − E1u��J

+
2

�

 �

2�2�1/2�
E0

�

dE1uJ

4f0�1u,0u
+�f2�a,0u

+,1u�

�Eu�E0u
+�J − E1uJ� �

+ 10 �
k�,k=1,2

�
��

�− 1�2Ia+���1 + �����


��
��

2fk
*�a,��,0u

+�fk��a,��,0u
+�

E0u
+�J − E����J

+
2

�

 �

2�2�1/2


�
E0

�

dE��J

2fk
*�a,��,0u

+�fk��a,��,0u
+�

�Eu�E0u
+�J − E��J� �


 
 k k� 2

	� − 	� 0
��Ia 2 Ia

k Ia k�
�2 Ia Ia

0 Ia − Ia
 .

�16�

CD and eqQ0 are the first-order contributions to the cor-
esponding parameters in Eqs. (13) and (16), respectively.
n Eqs. (14)–(16), ���0 and �� can take on the values of
���=0� and ±1���0�. For each perturbing electronic
tate ��, �i=1 �−1� if the state has g �u� symmetry and
he state’s contribution to the hyperfine parameters
omes from both discrete levels �� ,J� and the energy con-
�
inuum EJ, whose density of state is �2/���� /2�2Eu�1/2,
here Eu is the radial kinetic energy. E0, the lower limit

f the integrals for the energy continuum, is the energy
ust above the last discrete rovibrational level that an at-
ractive potential can support. In the expressions for �B,
B, and eqQB, the extra factor �1+ ����� arises from the �
oubling of the perturbing state ��.

. Preparation of Potential Energy Curves and
lectronic Wave Functions
e use the available empirical and theoretical I2 PECs to

onstruct the rovibrational structure and the associated
ave functions inside each electronic state. The B-state
mpirical PEC is adopted from the analysis performed by
erstenkorn et al.,29 in which the PEC was constructed

rom Fourier spectroscopic data by use of an inverted per-
urbation approach method. For the six states that per-
urb the B0u

+ state, we adopt the empirically improved
elativistic PECs in Ref. 30, and these PECs are used in
he short and intermediate internuclear separations �R
6.5 Å�. Figure 1 plots these PECs over the range 2.5 Å
R�6.5 Å, along with the B-state empirical PEC and the

ther three PECs belonging to the same dissociation
imit. Apart from these PECs, the 1g�1�g� empirical PEC
etermined from the optical–optical double-resonance ex-
eriment by Jewsbury et al.31 is also tested in the calcu-
ation. For large internuclear separations �R7 Å�, the
ECs take the inverse-power form, V�R�= �C5 /R5�
�C6 /R6�+Ediss, which includes quadrupolar electrostatic
nd dispersion energy terms, with the corresponding co-
fficients C5 and C6 determined by Saute and
ubert-Frécon.32 Figure 2 shows these long-range PECs

or all ten electronic states that share the same dissocia-
ion limit, 2P3/2+2P1/2. To make a smooth transition be-
ween the two PEC segments, each short-range PEC is
hifted vertically to match the corresponding long-range
EC at around R=7 Å. The matched short- and long-
ange PECs are illustrated in Fig. 3.

The matrix element 	���J� �V	�
k �a��0u

+�J� in the functions
k�a ,�� ,0u

+� in Eqs. (13)–(16) is approximated as a product
f an electronic matrix element and a Franck–Condon in-

ig. 1. PECs for ten electronic states converging to the 2P3/2
2P1/2 dissociation limit over the range 2.5 Å�R�6.5 Å. These
ECs are adopted from the relativistic calculations by de Jong
t al.30 except for the B state, for which an empirical PEC29 is
sed.
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egral between the B0u
+ and the perturbing states. The

lectronic matrix element is assumed to have a weak R
ependence over the range sampled by the vibrational
ave function. FORTRAN codes LEVEL33 and BCONT34 devel-

ped by Le Roy and Kraemer are used to calculate the
ranck–Condon integrals for the discrete levels and en-
rgy continua, respectively. As an example, a portion of
he B-state rovibrational structure is sketched in Fig. 4,
nd the vibrational levels inside a perturbing state C :1u
re shown in Fig. 5. A special case arises when a potential
an support rotational levels above its asymptotic energy
ecause of a potential barrier located at the PEC outer
imb. Wave functions of such levels can tunnel through
he potential barrier. As a result, their energy spectra can
e broadened significantly and can no longer be treated as
iscrete or quasi-discrete levels. We isolate these levels
rom the rest of the discrete levels and treat them instead
s part of the energy continuum.
At large internuclear separations �R �7 Å�, the mo-

ecular wave functions can be constructed from symme-

Fig. 2. Long-range PECs for the ten electronic states, adopted
from Ref. 32. Dashed line, the 2P3/2+2P1/2 dissociation limit. Note
that 1u� and 1g� refer to the C :1u�3�u

+� and 1g�3�g
−� states,

respectively.

ig. 3. Combining the short- and long-range potentials. Solid
urves, the short-range �R�7 Å� PECs from the ab initio
alculation30; dashed curves, the ab initio long-range PECs from
ef. 32. To make a smooth connection between two segments of

he PEC, each short-range �R�7 Å� PEC has been shifted verti-
ally to match the corresponding long-range one. The unchanged
-state empirical PEC29 and ab initio long-range PEC are also

ncluded.
rized products of two atomic wave functions. Each mo-
ecular wave function constructed in this way is a linear
ombination of the separated-atom basis functions (see
able I in Ref. 32). For example, the two 1u states, 1u�3�u

+�
nd C :1u�3�u

+�, also designated as 1u� and 1u�, respectively,
re mixtures of the two basis functions �1u�� and �1u��:

�1u�� = ��1u�� − �1 − �2�1u��,

�1u�� = ��1u�� + �1 − �2�1u��, �17�

ith � as the admixture of the two basis functions. Like-
ise, the two 1g states, 1g�1�g� and 1g�3�g

−�, are linear
ombinations of the two basis functions �1g�� and �1g��:

�1g�� = ��1g�� + �1 − �2�1g��,

ig. 4. B-state rovibrational structure. Thick solid curves are
he empirical B-state rotationless potential.29 Vibrational levels
�=57–68 are indicated as short-dashed lines. The rotational lev-
ls at several vibrational levels are also drawn as short bars. The
urve of long dashes is the effective potential (a sum of the rota-
ionless and centrifugal potentials) associated with a rotational
evel ���=60,J�=83�. The probability distributions of the molecu-
ar vibration for levels ���=60,J�=0� and ���=60,J�=83� are plot-
ed as thin solid curves for comparison of the internuclear sepa-
ations populated by the two levels.

ig. 5. Two 1u PECs used in the calculation of CB. Also plotted is
he B-state empirical potential,29 which is used for all internu-
lear separations. C :1u and 1u PECs �R�7 Å� are constructed
rom theoretical30 �R�7 Å� and long-range PECs32 �R�7 Å�. The
ECs from ab initio calculation are shifted vertically to match
he corresponding long-range ones. Dashed lines, the vibrational
evels of the C :1u state. The 1u and C :1u states are also denoted
y 1� and 1�, respectively.
u u
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�1g�� = ��1g�� − �1 − �2�1g��, �18�

here 1g� and 1g� refer to 1g�1�g� and 1g�3�g
−� states, re-

pectively. The R dependence of the mixing parameters �
nd � will be examined in Section 3. The other two states,
g
−�3�g� and �3�0u

−, each consist of only one basis function.
ith molecular wave functions derived from the

eparated-atomic basis functions, the electronic matrix el-
ment 	���V	�

k �a��0u
+� can be readily determined from the

xperimental values of atomic hyperfine constants.18,24

. RESULTS AND DISCUSSIONS
n this section we present results for the calculated effec-
ive hyperfine parameters, eqQB, CB, dB, and �B, together
ith a detailed analysis of the electronic structure of the
ssociated states. The calculation covers nearly all the vi-
rational levels �3����82� in the B0u

+ state, with Rc ex-
ending from �3.5 to �12.5 Å. Additionally, to demon-
trate the numerical analysis on a finer energy scale, we
how the calculated rotational dependence of the hyper-
ne parameter CB for two vibrational levels. We also com-
are calculations with experimental results.

. Spin–Rotation Parameter CB and the
dmixture of Two 1u States
he states that contribute to CB are restricted to the 1u
tates by the coupling selection rule associated with the
ff-diagonal rotational Hamiltonian V0. Thus the calcula-
ion of CB automatically isolates the second-order contri-
utions of the two 1u states from those of the other four
erturbing states. Furthermore, this allows a determina-
ion of the mixing parameter � between the two 1u states
hat, in turn, can serve as a consistency check of the rel-
vant ab initio calculation based on the separated-atom
odel. The details of the PECs and molecular wave func-

ions used in Eq. (13) have already been described in Sec-
ion 2. Here we stress that, in the calculation, we are able
o use the same value for mixing parameter � at a wide
ange of internuclear separations, especially in the inter-
ediate and long ranges and this value is adjusted until a

lobal agreement with experimental data is achieved.
Figure 6 summarizes the comparison between calcula-

ions and experiments. In the figure, filled circles are ex-
erimental data, and open circles and squares are calcu-
ations performed with the mixing parameter �=0.99 and
.9, respectively. To the best of our knowledge, we incor-
orated all available experimental data reported in previ-
us publications.1–17 First, the result shows a sensitive
ependence on the mixing parameter � at large internu-
lear separations R �7 Å, as shown in Fig. 6(a). In con-
rast, we verify that the uncertainty in the two 1u PECs
as merely a small influence on the calculation at large R.
or instance, we intentionally decrease the potential
epths of the two 1u states by 50 and 30 cm−1 and repeat
he calculation. While this modification results in a no-
iceable reduction of CB between 4.0 and 5.5 Å, as indi-
ated by triangles in Fig. 6(b), it induces less than a 2%
hange of CB at Rc �7 Å. Additional diagnostic tests on
he different parts of the two 1u PECs produce similar
utcomes. Consequently, the mixing parameter � is essen-
ially constant and takes on the value of 0.99 for internu-
lear separation R7 Å. Moreover, a calculation that
ses the same � at even shorter Rc is in good agreement
ith the experiment until Rc reaches 4 Å, as shown in
igs. 6(b) and 6(c). On the other hand, a close examina-

ion of CB at Rc�4 Å in Fig. 6(c) shows that the calcu-
ated results gradually deviate from the experiment,
uantitatively illustrating a transition from the
eparated-atom model to the overlapped and distorted
harge distribution that calls for a description employing
ore sophisticated molecular wave functions.

ig. 6. Second-order calculations of the spin–rotation param-
ter CB. Filled circles, spectroscopic data from the literature1–17;
ther symbols and lines, calculations. (a) With a mixing param-
ter �=0.99 (open circles on solid curve) for two 1u states, the cal-
ulations agree well with the experimental data,1–17 whereas
hanging � to 0.9 (squares on dashed curve) results in a large
lobal deviation from the experimental data. (b) A deliberate re-
uction of the potential depths of the two 1u PECs (triangles on
olid curve) produces a noticeable discrepancy at Rc=4.2–5.5 Å
ut does not affect calculations at shorter and longer internu-
lear separations. (c) At Rc� �4 Å, the calculation begins to de-
art from the experimental data.1–17
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Figure 7 plots the calculated rotational dependence for
wo vibrational levels, ��=70 and ��=47, with the mixing
arameter �=0.99. Considering a large energy difference
etween the two levels and the use of a fixed mixing pa-
ameter, the agreement with the experimental data1–17 is
easonably good at both vibrational levels. Similar to the
lobal trend exhibited in Fig. 6, the rotational dependence
f CB is due to the smooth variation of the Franck–
ondon overlap and the energy denominator in Eq. (13).
his variation is also responsible for the perturbation-

nduced rovibrational dependence in the other three hy-
erfine parameters.
When dealing with high-lying levels of the B0u

+ state,
e estimate the possible contributions beyond second-
rder perturbation theory. The strength of the perturba-
ion is characterized by the parameter �= �� /	E�, where �
s the coupling between the two discrete levels inside the
0u

+ and 1u states and 	E is their energy difference. Nu-
erical estimation shows that � is well below 1 for these

igh-lying levels. Moreover, when there is a possibility of
nergy coincidence, magnitude of the coupling between
he two levels involved is verified to be below a few mega-
ertz. Given this coupling strength, 	E has to be less
han a few tens of megahertz for a strong perturbation to
ccur, which is unlikely because of the large mismatch in
he rovibrational constants of the B0u

+ and 1u states. Thus
econd-order perturbation theory is sufficient for the cal-
ulation of CB and the analysis of the related 1u states.
owever, for the other three hyperfine parameters, pre-

autions should be taken because the B0u
+ state can be

trongly coupled to a discrete level in a particular elec-
ronic state. We will discuss this case in Subsection 3.C.

. Separation of Contributions from 0g
−
„

3�g…

nd „3…0u
− States

lthough only two 1u states contribute to CB, the other
hree parameters, �B, dB, and eqQB, contain perturba-

ig. 7. Rotational dependence of CB around two vibrational lev-
ls ��=47 and 70. Filled circles and solid curves, experimental
ata1–17 and fit, respectively. Open circles, calculation by second-
rder perturbation theory. Dashed curves, fits to the computed
oints.
ions from all six perturbing states. In Subsection 3.A, we
etermined the mixing parameter � associated with the
wo 1u states, and the sensitivity of CB to the related
ECs was investigated. With the help of this information,
e decompose the hyperfine parameters into contribu-

ions from subsets of six states, or even from individual
tates when it is possible, allowing a sensitive character-
zation of the 0g

− and 0u
− states and the related long-range

otentials.
We divide the six states into four groups: two 1u states,

he 0g
− state, the 0u

− state, and two 1g states. Each of the
hree hyperfine parameters can be decomposed into terms
hat correspond to the contributions from these four
roups of electronic states. For instance, the scalar spin–
pin parameter �B can be written as

�B = ��1u� + ��1g� + ��0g
−� + ��0u

−�. �19�

rom Eqs. (14) and (15), it follows that dB is closely re-
ated to �B by

dB = 1
2��1u� + 1

2��1g� − ��0g
−� − ��0u

−�. �20�

sing Eqs. (19) and (20), we can isolate the contributions
f the 0g

− and 0u
− states from those of the other four states

y

���0g
−� + ��0u

−�� = 1
3 ��B − 2dB�, �21�

here the right-hand side can be determined experimen-
ally with the values of �B and dB extracted from the spec-
roscopic fit.1–17 The left-hand side of Eq. (21) is calcu-
ated and plotted (open squares on dashed curve) in Fig.
(a). For comparison we also plot the experimental values
filled circles) according to the right-hand side of Eq. (21).
ecall that in the calculation there is no adjustable pa-
ameter for the electronic wave functions of the 0g

− and 0u
−

tates. As can be seen in Fig. 8(a), there is a noticeable
iscrepancy between the experiment and the calculation,
hich increases with increasing Rc.
To resolve the source of this discrepancy, the contribu-

ions from 0g
− and 0u

− need to be distinguished from each
ther. We notice that the last term in Eq. (16) for eqQB
ominates when k and k� equal 1. Thus one can keep only
hese terms and compare them with Eq. (14). This leads
o the following relation between eqQB and �B:

1
20�eqQB − eqQ0� � − 1

2��1u� + 1
2��1g� − ��0g

−� + ��0u
−�,

�22�

here eqQ0 is the first-order contribution, which is calcu-
ated in the separated-atom basis set at large internu-
lear separations. From Eqs. (19) and (20) and expression
22), the contributions from 0g

− and 0u
− are thus isolated

rom each other by

���1u� − 2��0u
−�� = dB − 1

20�eqQB − eqQ0�,

���1u� + 2��0g
−�� = 2

3�B − 1
3dB − 1

20�eqQB − eqQ0�,

�23�

here the right-hand side again can be determined ex-
erimentally by use of the values of �B, dB, and eqQB ex-
racted from the spectroscopic fit. In Subsection 3.A we
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etermined the mixing parameter � related to 1u states.
his information is incorporated into the calculation of
he left-hand side of Eqs. (23) that also involves the con-
ribution from two 1u states. Figures 8(b) and 8(c) show
ur results for the 0g

− (open squares on dashed curves) and
u
− (open circles) states, respectively, along with the ex-
erimental data (filled circles) plotted in both panels ac-
ording to the right-hand side of Eqs. (23). While the cal-
ulation of 0g

− agrees with experimental data, a
iscrepancy exists for the 0u

− state that is consistent with
he discrepancy observed in Fig. 8(a). Evidently, the cal-
ulation of 0u

− is the source of this discrepancy.
We perform additional diagnostic calculations of ��0u

−�.
e verify that moderate modifications to the short- and

ntermediate-range potentials of the 0u
− state cannot be

esponsible for the large discrepancy at Rc �8 Å, as
hown in Fig. 8(b). Conversely, ��0u

−� is sensitive to C5 and
6 of the 0u

− long-range potential. In fact, at large Rc, the
agnitude of ��0u

−� has a steep increase that is dominated
y perturbations from the last few discrete levels in the 0−

ig. 8. Separation of the contributions from the 0u
− and 0g

−

tates. (a), The overall contribution of the 0u
− and 0g

− states to �B.
b) and (c), Two separated contributions. Filled circles, values de-
uced from the experimental data1–17 on �B, dB, and eqQB [see
qs. (21) and (23) and text for details]. Open squares on dashed

urves, the calculations; open circles on solid curves, the calcula-
ion with the 0u

−-long-range PEC replaced by that of the 2g state
see Fig. 2 for the two long-range PECs). In this calculation,
here is no adjustable parameter for the electronic wave
unctions.
u

tate whose energies depend sensitively on the shape of
he long-range potential. We therefore adjust C5 and C6 of
he 0u

− long-range potential to compensate for the error in
he calculation of ��0u

−�. The modified long-range potential
s then close to the 2g long-range potential as shown in
ig. 2. In light of this observation, we repeat the calcula-

ion of ��0u
−� with the 0u

− long-range potential replaced
ith that of the 2g state. These new results (open circles

n the solid curve) are also presented in Figs. 8(a) and
(b). The discrepancy is greatly reduced in comparison
ith the dashed curves that used the original 0u

− long-
ange potential. We also estimate the coupling-strength �
ntroduced in Subsection 3.A for each discrete level in the
u
− state to confirm the validity of the above analysis by
se of second-order perturbation theory. We note that, al-
hough this comparison demonstrates a highly sensitive
ependence of hyperfine interactions on the long-range
EC, the analysis alone does not provide a definitive an-
wer to the preferred use of the 2g-state long-range PEC.

. Strong Perturbation from the 1g„

1�g… State and Its
ontributions to Hyperfine Parameters
B, dB, and eqQB
n previous subsections we divided the six perturbing
tates that contribute to �B, dB, and eqQB into four
roups, and the contributions from three groups were
nalyzed in detail. Once the contributions from the last
wo 1g states are determined, the three hyperfine param-
ters �B, dB, and eqQB can be obtained by combination of
ontributions from all four groups. Among the two 1g
tates, the outer branch of the 1g�1�g� PEC is close to that
f the B0u

+ state (see Figs. 1 and 2), resulting in a strong
oupling to high-lying levels �70��B� �82� of the B0u

+ state
ecause of favorable Franck–Condon overlaps.4 Further-
ore, this perturbation is enhanced because for each
igh-lying level in the B0u

+ state, there is a nearby dis-
rete level in the 1g�1�g� state whose energy separation
ith the perturbed level is typically a few gigahertz. In

alculating the contribution of the 1g states, we monitor
he coupling strength between the B0u

+ and 1g�1�g� states
or high-lying levels �70��B� �82�. For �B� �78, the
oupling-strength � is verified to be below 0.1, whereas at
he last four levels �B� =79–82, � can be as large as 0.4.
herefore the second-order calculation for the 1g�1�g�
tate is primarily restricted to levels below �B� =78.

Despite the inadequacy of the second-order calculation
or the 1g�1�g� perturbation allows a high-resolution ex-
mination of the 1g�1�g� long-range potential. We find
hat only a minor adjustment on the long-range PEC (see
ig. 2) is needed for the calculation of �B to achieve good
greement with the experimental data,1–17 as shown in
ig. 9. In the calculation the value of the mixing param-
ter � for the two 1g states is taken from Ref. 4 and kept
xed.
Considering the linear independence of Eqs. (19) and

20) and expression (22), we perform calculations of dB
nd eqQB to cross-check the 1g long-range PEC and the
ixing parameters � and �. The hyperfine parameter dB

s calculated with Eq. (20). In the case of eqQB, our calcu-
ation includes both major contributions in expression
22) and other minor terms in Eq. (16). The results for dB
nd eqQ agree reasonably well with experiment, as
B
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hown, respectively, in Figs. 10 and 11. Compared with
B, our calculation of eqQB has a relatively large discrep-
ncy because the residual error of ��1g� is amplified by a
actor of 10 in the case of eqQB according to Eq. (19) and
xpression (22). Once the mixing parameter � of the two
g states is independently determined, the calculation of
B and eqQB can be further improved by a global fit of the
g�1�g� long-range PEC to the three hyperfine parameters
B, dB, and eqQB.

Unlike CB, �B, and dB, which result solely from pertur-
ations of external electronic states over the whole range
f internuclear separation, eqQB has both first-order and
econd-order components that are important in different
egions. Our numerical analysis makes it possible to lo-
ate more accurately the regions at which each compo-
ent dominates. As shown in Fig. 11, at short internuclear
eparation �Rc�5 Å�, the perturbation from the external
tates is negligible. The perturbation sets in at Rc�5 Å

ig. 9. Semilogarithmic plot of the second-order calculation of
he scalar spin–spin parameter �B. Filled circles, experimental
ata1–17; open circles, calculations. In the calculation, the mixing
arameters for the two 1u and the two 1g states are fixed to �
0.92 and �=0.84, respectively. Because the contribution from
g�1�g� state is extremely sensitive to the corresponding long-
ange potential, the 1g�1�g� long-range potential is fine tuned
see Fig. 2) to obtain good agreement with the experimental
ata.1–17

ig. 10. Semilogarithmic plot of the second-order calculation of
he tensor spin–spin parameter dB. Filled circles, experimental
ata1–17; open circles, calculations. The calculation combines the
ontributions from all six states [see Eq. (20)] that are deter-
ined in the calculation of �B. The calculation provides a cross-

heck of the 1g long-range PEC and the mixing parameters � and
.

nd increases along with the internuclear separation. Fi-
ally, it is worth noting that, at Rc�5 Å, the first-order
omponent of eqQB departs from the constant value deter-
ined by both the separated-atom basis and the linear

ombination of atomic orbitals models with the decreasing
nternuclear separation because of a combined effect of (1)
he nuclear quadrupole–quadrupole interaction and (2)
he distortion and overlapping of the two atomic electric
harge distributions.

. CONCLUSIONS
e have performed second-order calculations of the four

yperfine parameters CB, �B, dB, and eqQB by using the
vailable molecular PECs and electronic wave functions
erived from the separated-atom basis set. We have
hown that, by dividing the six perturbing electronic
tates into four subgroups, their contributions to the hy-
erfine parameters can be separated and directly com-
ared with the corresponding experimental data. For the
pin–rotation parameter CB, the results for both rovibra-
ional dependence agree well with the experimental data
or a wide range of internuclear separations �Rc �4 Å�,
nd the admixture of the two 1u states is independently
etermined as �=0.99. However, the calculations depart
rom the experimental data at short internuclear separa-
ions �Rc� �4 Å�, indicating the breakdown of the
eparated-atom model. Moreover, calculations of the other
hree hyperfine parameters verify the mixing parameter
f two 1g states and place a stringent constraint on the
ong-range PECs of the relevant electronic states. On the
asis of our investigations described here and earlier
tudies,1–17 the effective hyperfine Hamiltonian developed
n Ref. 28 with second-order perturbation is proved to be
ufficiently accurate to describe the experimental obser-

ig. 11. Second-order calculation of the electric quadrupole pa-
ameter eqQB. Filled circles, experimental data1–17; open circles,
alculations. The calculation combines the contributions from the
ame six states used for Figs. 9 and 10. The calculation provides
cross-check of the 1g long-range PEC and the mixing param-

ters � and �. The relatively large discrepancy is due to the fact
hat the residual error of ��1g� (the contribution of the 1g states
o �B) has been amplified by a factor of 10 in the case of eqQB [see
q. (19) and expression (22)].
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ations when strong perturbation from the 1g state is ab-
ent. The study provides an independent and quantitative
est on the separated-atom model and the related PECs.
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