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We present a high-resolution analysis of the six electronic states that share the same dissociation limit with
the second excited electronic state B in molecular iodine. These six states are coupled to the B state via hy-
perfine interactions. The four hyperfine parameters, Cp, 8, dg, and eq@p, are calculated with the available
potential energy curves and wave functions constructed from the separated-atom basis set. We obtain a maxi-
mum separation of the respective contributions from all six electronic states and compare each individual con-
tribution with high-precision spectroscopic data, providing an independent verification of the relevant elec-
tronic structure. © 2005 Optical Society of America
OCIS codes: 020.2930, 300.6390, 300.6460, 300.6190.
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1. INTRODUCTION

Comprehensive and high-precision measurements on hy-
perfine spectra in the B+ X system of molecular iodine
provide a unique opportunity for a detailed examination
of the molecule’s electronic structure relevant to the sec-
ond dissociation limit, 2Py, + 2P, ,. Molecular iodine is a
rare case in that the hyperfine spectra in the B+ X sys-
tem have been recorded not only with high precision at
the kilohertz level but also for a large set of rovibrational
levels, extending from v' =2 to just below the dissociation
limit (v =82) in the excited BO;(3Hu) electronic state.'™”
Precise empirical-interpolation formulas have been de-
veloped to describe the hyperfine interaction.?® These in-
terpolation forms present a detailed frequency map for
precision measurements relying on the hyperfine spec-
trum of molecular iodine. The vibrational levels studied
cover a broad range of internuclear separation, with R
centroid (R., the mean of internuclear separations
weighted by the B-state vibrational wave function) rang-
ing from approximately 3 to 12 A. Because hyperfine in-
teractions can exert large influences on electronic struc-
ture, experimentally determined hyperfine parameters
over a large range of R, allow a sensitive test of the rel-
evant electronic wave functions and potential energy
curves.

Precise measurement of hyperfine interactions has
been applied to test several relevant electronic states, i.e.,
X, B, and E in molecular iodine*'®*?® and in other di-
atomic molecules.?® In the case of the B0} (°Il,) state in
molecular iodine, second-order contributions to the four
hyperfine parameters, the electric quadrupole parameter
eqQp, spin-rotation parameter Cp, tensorial spin—spin
parameter dg, and scalar spin—spin parameter g, have
been calculated for several vibrational levels (V'
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~40-82) in the B state.H181922-24 1y thege analyses, the
molecular wave functions involved were constructed from
a separated-atom basis set because the molecule spends
much of its time at large internuclear separations for
high-lying vibrational levels close to the dissociation
limit. The good agreement between the experimental data
and these calculations justifies the separated-atom model
as a simple and effective tool in characterizing the elec-
tronic structure at large internuclear separations. None-
theless, there is room to extend this approach. First, the
same calculation can be carried out with improved reso-
lution for vibrational levels lower than v' ~40 as well as
for the detailed rotational dependence in each vibrational
level. This approach has become particularly relevant
given the latest spectroscopic data with an extensive cov-
erage of vibrational and rotational dependence of the hy-
perfine interactions.®! In addition, detailed information
on the short- and intermediate-range (R<7 A) potential
energy curve (PEC) of the perturbing electronic state, ob-
tained either empirically or theoretically, was largely un-
available when these earlier calculations were performed,
and therefore the property of the molecular wave function
of the corresponding electronic state could not be indepen-
dently inferred from these analyses. In contrast, with ad-
equate constraints on the PECs, a correct account of the
hyperfine parameters permits either the determination of
the admixture of the basis wave functions in the
separated-atom model or the verification of more sophis-
ticated molecular wave functions.

In this paper, we extend the calculation of hyperfine pa-
rameters to low vibrational levels and to rotational de-
pendence at each vibrational level, using electronic wave
functions derived from the separated-atom basis set and
the related empirical or theoretical PECs. Our aim is to
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take advantage of our recently measured hyperfine pa-
rameters covering an extensive range of rovibrational lev-
els near the dissociation limit'®!” and combine them with
other published experimental data to test the PECs, the
electronic wave functions, and the separated-atom model.
In doing so, we are able to quantitatively address several
issues such as (1) to what extent the separated-atom wave
functions can be extrapolated to small internuclear sepa-
rations, (2) the estimation of the admixture of the basis
wave functions in the separated-atom model, and (3) the
sensitivity of the dependence of hyperfine parameters on
the choice of PECs. For the spin—-rotation parameter Cp,
the calculated dependence on both vibrational and rota-
tional quantum numbers is in good agreement with the
experimental data for v =42. Subsequently, the admix-
ture of the two 1, states is independently determined.
Moreover, calculations of the other three parameters,
eqQp, dp, and Jp, place a stringent constraint on the long-
range PECs of the relevant electronic states. Here we con-
sider the smooth second-order contributions. Thus the
calculation does not cover the abnormal variations of the
hyperfine parameters around v'=57-60 and v'=76-78,
for which the existence of the strong hyperfine coupling
has already been analyzed in a great detail #1623

In Section 2 we introduce the explicit form of the
second-order contributions to the hyperfine parameters in
Hund’s case ¢ coupling scheme, along with a discussion of
the PECs and the electronic wave functions in the
separated-atom model. We present results for the four ef-
fective hyperfine parameters at various internuclear
separations in Section 3. These results are discussed in
three steps to demonstrate the maximum separation of
contributions from different perturbing electronic states.
First, a detailed analysis of Cp is required for the deter-
mination of the admixture of the two 1, states. Then,
through the calculation of &z, contributions from the
other two states (0, and 0,) are separated from the rest
(two 1, states), and the corresponding long-range PECs
are tested. Finally, we present results for eq@p and dp,
which are in part based on the information derived in the
previous two steps. Conclusions are provided in Section 4.

2. THEORY

The hyperfine interaction, which is not included in the
Born—-Oppenheimer molecular Hamiltonian, can couple
the BO; state to several electronic states sharing the
same 2Py, + 2P, ,, dissociation limit.?”*® Consequently, the
hyperfine spectra of the X« B transitions are altered to
various degrees depending on the coupling strength and
the energy differences between the B0} and the perturb-
ing states. An effective Hamiltonian based on second-
order perturbation theory was developed by Broyer et
al.?® to treat these couplings. Except for levels at which
strong coupling is present, perturbed hyperfine spectra
can generally be described by the effective hyperfine
Hamiltonian with high precision by use of the four effec-
tive hyperfine parameters, eq@p, Cg, dp, and &g, ex-
tracted from fitting the spectroscopic data to the effective
Hamiltonian. Moreover, second-order calculations of
these parameters relate their experimental values to the
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relevant PECs and the admixture of the basis wave func-
tions, imposing stringent constraints on the relevant elec-
tronic structure.

The detailed derivation of the matrix elements of this
effective hyperfine Hamiltonian and the associated effec-
tive hyperfine parameters can be found in the
literature.?*?® For clarity of the notation and discussion,
we provide an overview of this derivation before we list
the explicit expressions. Then we proceed to describe sev-
eral computational issues concerning the preparation of
the PECs, the electronic wave functions constructed from
the separated-atom basis set, and the electronic matrix
elements.

A. Matrix Element of the Hyperfine Hamiltonian
The hyperfine Hamiltonian of the iodine molecule can be
formally written as

Hye=Hyda) + Hy(b) + Hyfla,b), (1)

where a and b denote the two iodine nuclei and Hyda)
[Hndb)] and Hypda,b) represent the nucleus—electron and
nucleus—nucleus hyperfine interactions, respectively. The
last term in the above Hamiltonian is left out in the fol-
lowing discussion because it contains only nuclear coordi-
nates and thus cannot couple different electronic states.
With the last term dropped, this Hamiltonian can be ex-
pressed in tensorial form:

k
Hy= 2 2 2 (- DIQKI )V (e, (2)

a=a,b k q=-k

where the rank-% spherical tensor operators @*(I,) and
V*(e,) act, respectively, on the nuclear spin I, and the
electronic degrees of freedom.

Considering the strong spin-orbit interaction in this
heavy molecule, Hund’s case ¢ coupling scheme at large
internuclear separations is appropriate for the molecular
basis set, which we denote by

) = QW IFMp), 3)

where () is the projection of the total angular momentum
J onto the molecular axis connecting the two nuclei, v is
the vibrational quantum number, I is the total nuclear
spin, F=I+dJ, and My is the projection of F onto a quan-
tization axis. Note that in the energy continuum, the dis-
crete level index v is replaced by a continuous energy
spectrum E. Averaging explicitly over the molecular rota-
tion in the laboratory frame gives matrix elements of this
hyperfine Hamiltonian in terms of 3;j (parentheses) and 65
(curly brackets) symbols and electronic matrix elements:

(W [Hd@)|9) = Spp Suggary (= D212 (20" +11)

"k
><(2J+1)(21'+1)(21+1)]1/2<_Q, A Q)

J ok J||E I, I,
X{I F 1’}{@ r I}fk(“’ﬂl’”«’f”ﬂ’“ﬂ’
(4)

where Ad=J' -, AI=I"-1, AQ=0"-Q, and
frla, Q' ’“:]' ,Q,v;) encapsulates the averaging over the
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electronic motion in the molecular frame and the molecu-
lar vibration, which is written as

Cr
<k I, 1a>
01, -1,

Here Cy=pungr 1, is the nuclear magnetic dipole moment,
where uy is the nuclear magneton, g;_is the Landé factor
for the iodine nucleus, and C2=%eQ1a is the nuclear elec-
tric quadrupole moment with e the proton charge and @,
defined as

fiol@, Q' v, Q) = (- DY Q' U)|VE (@) Quy).

(5)

Q1a=e<la7MIa=Ia|E (3212;_r12;)|1a’M1a=Ia>7 (6)
p

where z,, and r, refer to the coordinates of the protons p in
the iodine nucleus.

For 0 #0, the projection of the angular momentum </
onto the molecular axis can take either the positive or the
negative direction, a degeneracy that is lifted by the cou-
pling with external states. In this case the molecular
wave function is represented by24

lel
| = <—5> [19Q, WIFMp) + - QWIIFMp)],  (7)
\!

where € can take on the values of 0 ((2=0) and =1 (Q
>0). The net effect of this () doubling on the matrix ele-
ment (4, |[Hida)| ) is to replace the f,(a,Q',v},,Q,vy) de-
fined in Eq. (5) by

1\l
(,_rg) {[1 + 66’(_ l)AJ]fk(G”Q”U:]HQ’UJ)

\J
+ C(Q+)[€+ E’(_ 1)AJ]fk(a,Q”U:]/’_ Q’ UJ)}9 (8)
where
J Ok J)
-0 O -Q
C(Q+)=—
(J’ k J)
-0 AQ Q

and Q*=0'+(). Expression (8) is equivalent to Eq. (6) in
Ref. 24 when e+ 0. For the case of the BO; state, expres-
sion (8) is reduced to

I

1\l
(:) [1+ € (- D¥f(a,Q',0),,05,v). 9)
\!

The matrix element for the second nucleus b is related
to that of the first nucleus a because of symmetry
considerations?*28:
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(W, p[HED) i, 1) = (= D, [HEda)l ),
W, pHED) 0y 1y = (- DA, L[ HEda)l e ), (10)

where the u (g) symmetry refers to the odd (even) elec-

tronic wave functions under reflection with respect to the

center of the molecule. Another component capable of cou-

pling external electronic states to the B0}, state is the off-

diagonal part of the rotational Hamiltonian V?, defined as
h2

VO=— Q—MRQ[J+(L_ +8)+J_(L,+8S,)], (11)

where u is the reduced mass of two nuclei and R is the
internuclear separation. It can couple only states with
AQ==+1 and the same u (g) symmetry, and therefore the
B0 state is coupled by V0 to only two 1, states. The ma-

trix element of V? between the B0} state and such a 1,
state with ) doubling (¢’=1) is evaluated as

<V0> = <1u,5’=1|V0|O;>
1
=-[2J(J + 1)]*—=
V2

hZ
—= (L, +S,)
2\2

0+'UJ
V2uR? ‘
O;UJ :|

x[ 1,0 =1),7),

ﬁ2

+ 1u(—Q’),U,, (L_+S_)
7 Z\s'E,uRQ

= —[2J(J + 1)]¥2\2

hZ
X\ 1,02 =1),v;, m<L++S+) 0,,uy
=~ [2J( + 1)]V2\2£,(1,,0%). (12)

The factor V2 in the last line of Eq. (12) arises from the ()
doubling of the 1, state.

B. Second-Order Contributions to Hyperfine Parameters

With the coupling matrix elements for V°, V!, and V2
given in Subsection 2.A, the hyperfine parameters are cal-
culated by second-order perturbation theory to include
the contributions from all rovibrational levels allowed by
the selection rules in each of the six perturbing states
[C:1,, 1, 1,('TLy), 1,(°5)), 0;(°11,), and (3)0;]. In the deri-
vation of these parameters (see Appendix I in Ref. 28), a
weak J' dependence of fi,(a,Q’, U,’]' ,Q,vy) across neighbor-
ing rotational levels is assumed when the summation on
J' is performed. However, to account for the () doubling,
one must replace f3,(a,Q’, v:,, ,Q,vy) defined in Eq. (5) with
expression (9). In fact, this modification does not interfere
with the just-mentioned assumption because the coupling
selection rules for AJ=¢J'-J are different for ¢’ =+1 and
—1; hence their combined effect adds no extra J’ depen-
dence to the modified fk(a,Q’,v:],,Q,vJ). After summa-
tions on I’ and J' and reorganization of various terms ac-
cording to their angular momentum dependence, the
explicit expressions for the four effective parameters are
obtained and are listed below?®:
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4
[1.(I, + 1)(21, + )]
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’
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2
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£, \"E(Eozw -Eq.)

v

1,J

1/2fm 4f0(1u’0;)f2(a’0;alu)
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v
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(k o2\ |I, 2 I,|]|2 I, I,
“\aa —a0 ok 1, #[lo 1, -1,
(16)

Cp and eq@Q are the first-order contributions to the cor-
responding parameters in Eqgs. (13) and (16), respectively.
In Egs. (14)—(16), Q' =0 and €' can take on the values of
0(Q2'=0) and £1(Q)'>0). For each perturbing electronic
state ', x;=1 (-1) if the state has g (v) symmetry and
the state’s contribution to the hyperfine parameters
comes from both discrete levels (v/,¢/) and the energy con-
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tinuum E;, whose density of state is (2/m)(u/242E,)"?,
where E, is the radial kinetic energy. E,, the lower limit
of the integrals for the energy continuum, is the energy
just above the last discrete rovibrational level that an at-
tractive potential can support. In the expressions for Jg,
dp, and eq@p, the extra factor (1+|€’|) arises from the Q
doubling of the perturbing state ()'.

C. Preparation of Potential Energy Curves and
Electronic Wave Functions
We use the available empirical and theoretical I PECs to
construct the rovibrational structure and the associated
wave functions inside each electronic state. The B-state
empirical PEC is adopted from the analysis performed by
Gerstenkorn et al.,?° in which the PEC was constructed
from Fourier spectroscopic data by use of an inverted per-
turbation approach method. For the six states that per-
turb the B0 state, we adopt the empirically improved
relativistic PECs in Ref. 30, and these PECs are used in
the short and intermediate internuclear separations (R
<6.5 A). Figure 1 plots these PECs over the range 2.5 A
<R<6.5 A, along with the B-state empirical PEC and the
other three PECs belonging to the same dissociation
limit. Apart from these PECs, the 1g(1Hg) empirical PEC
determined from the optical-optical double-resonance ex-
periment by Jewsbury et al.?! is also tested in the calcu-
lation. For large internuclear separations (R>7 A), the
PECs take the inverse-power form, V(R)=(C5/R5)
+(Cg/R®) +E 4, which includes quadrupolar electrostatic
and dispersion energy terms, with the corresponding co-
efficients Cs; and Cgz determined by Saute and
Aubert-Frécon.?2 Figure 2 shows these long-range PECs
for all ten electronic states that share the same dissocia-
tion limit, 2Pgy+2P,,,. To make a smooth transition be-
tween the two PEC segments, each short-range PEC is
shifted vertically to match the corresponding long-range
PEC at around R=7 A. The matched short- and long-
range PECs are illustrated in Fig. 3.

The matrix element (Q'}|V%,(a)|0}vy) in the functions
fr(a,Q’,0}) in Eqgs. (13)—(16) is approximated as a product
of an electronic matrix element and a Franck—Condon in-

1,3:0)

C:1uCsy)
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4400+
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Energy (cm™")
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B:0y (ny)

3200

3 4 o 5 6
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Flg 1. PECs for ten electronic states converging to the 2P,
+2P,,, dissociation limit over the range 2.5 A<R<6.5 A. These
PECs are adopted from the relativistic calculations by de Jong
et al.®® except for the B state, for which an empirical PEC? is
used.
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R (A)
Fig. 2. Long-range PECs for the ten electronic states, adopted
from Ref. 32. Dashed line, the 2P, +2P, , dissociation limit. Note
that 1 and lg refer to the C: lu(3E;) and lg(SZéj) states,
respectively.
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Energy

4200
B:0y )

4150-\
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Fig. 3. Combining the short- and long-range potentials. Solid
curves, the short-range (R<7 A) PECs from the ab initio
calculation®; dashed curves, the ab initio long-range PECs from
Ref. 32. To make a smooth connection between two segments of
the PEC, each short-range (R <7 A) PEC has been shifted verti-
cally to match the corresponding long-range one. The unchanged
B-state empirical PEC* and ab initio long-range PEC are also
included.

tegral between the BO; and the perturbing states. The
electronic matrix element is assumed to have a weak R
dependence over the range sampled by the vibrational
wave function. FORTRAN codes LEVEL®> and BCONT** devel-
oped by Le Roy and Kraemer are used to calculate the
Franck—Condon integrals for the discrete levels and en-
ergy continua, respectively. As an example, a portion of
the B-state rovibrational structure is sketched in Fig. 4,
and the vibrational levels inside a perturbing state C:1,
are shown in Fig. 5. A special case arises when a potential
can support rotational levels above its asymptotic energy
because of a potential barrier located at the PEC outer
limb. Wave functions of such levels can tunnel through
the potential barrier. As a result, their energy spectra can
be broadened significantly and can no longer be treated as
discrete or quasi-discrete levels. We isolate these levels
from the rest of the discrete levels and treat them instead
as part of the energy continuum.

At large internuclear separations (R>~7 A), the mo-
lecular wave functions can be constructed from symme-
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trized products of two atomic wave functions. Each mo-
lecular wave function constructed in this way is a linear
combination of the separated-atom basis functions (see
Table I in Ref. 32). For example, the two 1, states, 1,(°37)
and C:1,(®3}), also designated as 1/, and 1/, respectively,
are mixtures of the two basis functions |1,) and |1):

1) = al1) - 1= (1)),

117y = |12y +\1 = a?[1)), (17)
with a as the admixture of the two basis functions. Like-

wise, the two 1, states, lg(IHg) and 1g(32§), are linear
combinations of the two basis functions [1;) and |17):

1) = Bl1p) + V1= B1p),

1 -
= J=83. -~

ass0{ | -
'g 43001 7 v=60, J=83
3
© 42501 v'=60, J'=0
g 42800 T
w | b=

PPYIY I R

R(A)

Fig. 4. B-state rovibrational structure. Thick solid curves are
the empirical B-state rotationless potential.?® Vibrational levels
v/ =57-68 are indicated as short-dashed lines. The rotational lev-
els at several vibrational levels are also drawn as short bars. The
curve of long dashes is the effective potential (a sum of the rota-
tionless and centrifugal potentials) associated with a rotational
level (v =60,J’ =83). The probability distributions of the molecu-
lar vibration for levels (v'=60,J'=0) and (v =60,J’ =83) are plot-
ted as thin solid curves for comparison of the internuclear sepa-
rations populated by the two levels.

Energy (cm™)
»H »
N w
(& (=]
$ 3

4200+

41501 «1y» (C:1y)

T T

4 5 6 . 7 8
R(A)

Fig. 5. Two 1, PECs used in the calculation of Cy. Also plotted is
the B-state empirical potential,?? which is used for all internu-
clear separations. C:1, and 1, PECs (R<7 A) are constructed
from theoretical®® (R <7 A) and long-range PECs*2 (R=7 A). The
PECs from ab initio calculation are shifted vertically to match
the corresponding long-range ones. Dashed lines, the vibrational
levels of the C:1, state. The 1, and C:1, states are also denoted
by 1, and 1;, respectively.



956 J. Opt. Soc. Am. B/Vol. 22, No. 5/May 2005

112 = A1) - 1- ALY, (18)

where 1/ and 17 refer to lg(ll_lg) and lg(sigj) states, re-
spectively. The R dependence of the mixing parameters «
and B will be examined in Section 3. The other two states,
O;,(SHg) and (3)0,, each consist of only one basis function.
With molecular wave functions derived from the
separated-atomic basis functions, the electronic matrix el-
ement (Q'|V%(a)|0}) can be readily determined from the
experimental values of atomic hyperfine constants. 824

3. RESULTS AND DISCUSSIONS

In this section we present results for the calculated effec-
tive hyperfine parameters, eq@g, Cp, dg, and Jg, together
with a detailed analysis of the electronic structure of the
associated states. The calculation covers nearly all the vi-
brational levels (3<v' <82) in the B0} state, with R, ex-
tending from ~3.5to ~12.5 A. Additionally, to demon-
strate the numerical analysis on a finer energy scale, we
show the calculated rotational dependence of the hyper-
fine parameter Cp for two vibrational levels. We also com-
pare calculations with experimental results.

A. Spin-Rotation Parameter Cy and the
Admixture of Two 1, States
The states that contribute to Cp are restricted to the 1,
states by the coupling selection rule associated with the
off-diagonal rotational Hamiltonian V°. Thus the calcula-
tion of Cp automatically isolates the second-order contri-
butions of the two 1, states from those of the other four
perturbing states. Furthermore, this allows a determina-
tion of the mixing parameter « between the two 1, states
that, in turn, can serve as a consistency check of the rel-
evant ab initio calculation based on the separated-atom
model. The details of the PECs and molecular wave func-
tions used in Eq. (13) have already been described in Sec-
tion 2. Here we stress that, in the calculation, we are able
to use the same value for mixing parameter « at a wide
range of internuclear separations, especially in the inter-
mediate and long ranges and this value is adjusted until a
global agreement with experimental data is achieved.
Figure 6 summarizes the comparison between calcula-
tions and experiments. In the figure, filled circles are ex-
perimental data, and open circles and squares are calcu-
lations performed with the mixing parameter «=0.99 and
0.9, respectively. To the best of our knowledge, we incor-
porated all available experimental data reported in previ-
ous publications.l_17 First, the result shows a sensitive
dependence on the mixing parameter « at large internu-
clear separations R > ~7 A, as shown in Fig. 6(a). In con-
trast, we verify that the uncertainty in the two 1, PECs
has merely a small influence on the calculation at large R.
For instance, we intentionally decrease the potential
depths of the two 1, states by 50 and 30 cm~! and repeat
the calculation. While this modification results in a no-
ticeable reduction of Cp between 4.0 and 5.5 A, as indi-
cated by triangles in Fig. 6(b), it induces less than a 2%
change of Cg at R,> ~7 A. Additional diagnostic tests on
the different parts of the two 1, PECs produce similar
outcomes. Consequently, the mixing parameter « is essen-
tially constant and takes on the value of 0.99 for internu-
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® Experimental data
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1} Calculation (a=0.9) g I
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g (MHz)

1.0
O

0.54

1 T
4.0 4.5 50 . 55 6.0
R centroid (A)

® Experimental data -~
© Calculation (a=0.99)
0.31 |3 calculation (a=10.9)
- -A- Potential depths reduced
X by 50 cm™ and 30 cm™",
= 0.2+ respectively. (¢ = 0.99) .
0 ’J3
& d
0.1 e
can o L (C)
0.04

T T T T T T
‘ 3.2 3.4 3.6 3.8 4.0 4.2
R centroid (A)

Fig. 6. Second-order calculations of the spin-rotation param-
eter Cp. Filled circles, spectroscopic data from the literature!™7;
other symbols and lines, calculations. (a) With a mixing param-
eter @=0.99 (open circles on solid curve) for two 1, states, the cal-
culations agree well with the experimental data,’'” whereas
changing « to 0.9 (squares on dashed curve) results in a large
global deviation from the experimental data. (b) A deliberate re-
duction of the potential depths of the two 1, PECs (triangles on
solid curve) produces a noticeable discrepancy at R,=4.2-5.5
but does not affect calculations at shorter and longer internu-
clear separations. (c) At R,< ~4 A, the calculation begins to de-
part from the experimental data.'”

clear separation R>7 A. Moreover, a calculation that
uses the same « at even shorter R, is in good agreement
with the experiment until R, reaches 4 A, as shown in
Figs. 6(b) and 6(c). On the other hand, a close examina-
tion of Cp at R.<4 A in Fig. 6(c) shows that the calcu-
lated results gradually deviate from the experiment,
quantitatively illustrating a transition from the
separated-atom model to the overlapped and distorted
charge distribution that calls for a description employing
more sophisticated molecular wave functions.
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Figure 7 plots the calculated rotational dependence for
two vibrational levels, v'=70 and v/ =47, with the mixing
parameter @=0.99. Considering a large energy difference
between the two levels and the use of a fixed mixing pa-
rameter, the agreement with the experimental data’™ is
reasonably good at both vibrational levels. Similar to the
global trend exhibited in Fig. 6, the rotational dependence
of Cp is due to the smooth variation of the Franck-
Condon overlap and the energy denominator in Eq. (13).
This variation is also responsible for the perturbation-
induced rovibrational dependence in the other three hy-
perfine parameters.

When dealing with high-lying levels of the BO; state,
we estimate the possible contributions beyond second-
order perturbation theory. The strength of the perturba-
tion is characterized by the parameter \=|7/AE|, where 7
is the coupling between the two discrete levels inside the
BO0; and 1, states and AE is their energy difference. Nu-
merical estimation shows that \ is well below 1 for these
high-lying levels. Moreover, when there is a possibility of
energy coincidence, magnitude of the coupling between
the two levels involved is verified to be below a few mega-
hertz. Given this coupling strength, AE has to be less
than a few tens of megahertz for a strong perturbation to
occur, which is unlikely because of the large mismatch in
the rovibrational constants of the B0} and 1, states. Thus
second-order perturbation theory is sufficient for the cal-
culation of Cp and the analysis of the related 1, states.
However, for the other three hyperfine parameters, pre-
cautions should be taken because the BO; state can be
strongly coupled to a discrete level in a particular elec-
tronic state. We will discuss this case in Subsection 3.C.

B. Separation of Contributions from 0;(3Hg)

and (3)0, States

Although only two 1, states contribute to Cp, the other
three parameters, dz, dg, and eq@p, contain perturba-

® Experimental data P
~ 24 | O Calculation .-
& ]
2 22-
o
& |
20 o -
I
0
0.32] _o
T 0.30
=3
om 4
3] 0.28
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T T T T T T T T 3
0 2 10 14x10

6 8
J(J+1)

Fig. 7. Rotational dependence of Cy around two vibrational lev-
els =47 and 70. Filled circles and solid curves, experimental
data'™7 and fit, respectively. Open circles, calculation by second-
order perturbation theory. Dashed curves, fits to the computed
points.
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tions from all six perturbing states. In Subsection 3.A, we
determined the mixing parameter a associated with the
two 1, states, and the sensitivity of Cp to the related
PECs was investigated. With the help of this information,
we decompose the hyperfine parameters into contribu-
tions from subsets of six states, or even from individual
states when it is possible, allowing a sensitive character-
ization of the 0, and 0, states and the related long-range
potentials.

We divide the six states into four groups: two 1, states,
the 0, state, the 0, state, and two 1, states. Each of the
three hyperfine parameters can be decomposed into terms
that correspond to the contributions from these four
groups of electronic states. For instance, the scalar spin—
spin parameter dg can be written as

dg=A(1,) + 8(1,) + &(05) + 8(0,). (19)

From Eqgs. (14) and (15), it follows that dp is closely re-
lated to &g by

dp=38(1,) +38(1,) - 50;) - 50;). (20)

Using Egs. (19) and (20), we can isolate the contributions
of the 0, and 0, states from those of the other four states
by

[8(0;) + 80,)] = 5(65 - 2dp), 21)

where the right-hand side can be determined experimen-
tally with the values of 6z and dp extracted from the spec-
troscopic fit.)17 The left-hand side of Eq. (21) is calcu-
lated and plotted (open squares on dashed curve) in Fig.
8(a). For comparison we also plot the experimental values
(filled circles) according to the right-hand side of Eq. (21).
Recall that in the calculation there is no adjustable pa-
rameter for the electronic wave functions of the 0; and 0,
states. As can be seen in Fig. 8(a), there is a noticeable
discrepancy between the experiment and the calculation,
which increases with increasing R,.

To resolve the source of this discrepancy, the contribu-
tions from 0, and 0, need to be distinguished from each
other. We notice that the last term in Eq. (16) for eq®p
dominates when £ and &’ equal 1. Thus one can keep only
these terms and compare them with Eq. (14). This leads
to the following relation between eqQp and Jg:

50lea@p - eq@] = - 58(1,) + 5 8(1,) - 8(07) + &(0}),
(22)

where eq@ is the first-order contribution, which is calcu-
lated in the separated-atom basis set at large internu-
clear separations. From Eqs. (19) and (20) and expression
(22), the contributions from 0; and 0, are thus isolated
from each other by

[8(1,) - 28(0)] = dp - 55(eqQp — eqQy),

[8(1,) +28(0;)] = 5 65 — 5d — 55 (eq@p — eqQo),
(23)

where the right-hand side again can be determined ex-
perimentally by use of the values of g, dp, and eq@p ex-
tracted from the spectroscopic fit. In Subsection 3.A we
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Fig. 8. Separation of the contributions from the 0, and 0,
states. (a), The overall contribution of the 0, and 0, states to Jz.
(b) and (c), Two separated contributions. Filled circfes, values de-
duced from the experimental data'™" on &g, dp, and eqQp [see
Egs. (21) and (23) and text for details]. Open squares on dashed
curves, the calculations; open circles on solid curves, the calcula-
tion with the 0,-long-range PEC replaced by that of the 2, state
(see Fig. 2 for the two long-range PECs). In this calculation,
there is no adjustable parameter for the electronic wave
functions.

determined the mixing parameter « related to 1, states.
This information is incorporated into the calculation of
the left-hand side of Eqs. (23) that also involves the con-
tribution from two 1, states. Figures 8(b) and 8(c) show
our results for the 0, (open squares on dashed curves) and
0, (open circles) states, respectively, along with the ex-
perimental data (filled circles) plotted in both panels ac-
cording to the right-hand side of Eqgs. (23). While the cal-
culation of 0, agrees with experimental data, a
discrepancy exists for the 0, state that is consistent with
the discrepancy observed in Fig. 8(a). Evidently, the cal-
culation of 0, is the source of this discrepancy.

We perform additional diagnostic calculations of &(0;).
We verify that moderate modifications to the short- and
intermediate-range potentials of the 0, state cannot be
responsible for the large discrepancy at R,> ~8 A, as
shown in Fig. 8(b). Conversely, &0,) is sensitive to C5 and
C; of the 0, long-range potential. In fact, at large R, the
magnitude of §(0;) has a steep increase that is dominated
by perturbations from the last few discrete levels in the 0,
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state whose energies depend sensitively on the shape of
the long-range potential. We therefore adjust C5 and Cg of
the 0, long-range potential to compensate for the error in
the calculation of §(0;). The modified long-range potential
is then close to the 2, long-range potential as shown in
Fig. 2. In light of this observation, we repeat the calcula-
tion of &(0;) with the 0, long-range potential replaced
with that of the 2, state. These new results (open circles
on the solid curve) are also presented in Figs. 8(a) and
8(b). The discrepancy is greatly reduced in comparison
with the dashed curves that used the original 0, long-
range potential. We also estimate the coupling-strength \
introduced in Subsection 3.A for each discrete level in the
0, state to confirm the validity of the above analysis by
use of second-order perturbation theory. We note that, al-
though this comparison demonstrates a highly sensitive
dependence of hyperfine interactions on the long-range
PEC, the analysis alone does not provide a definitive an-
swer to the preferred use of the 2,-state long-range PEC.

C. Strong Perturbation from the 1 g(ll'[g) State and Its
Contributions to Hyperfine Parameters

op, dp, and eqQp

In previous subsections we divided the six perturbing
states that contribute to g, dp, and eq@®p into four
groups, and the contributions from three groups were
analyzed in detail. Once the contributions from the last
two 1, states are determined, the three hyperfine param-
eters g, dp, and eqQp can be obtained by combination of
contributions from all four groups. Among the two 1,
states, the outer branch of the lg(ll'[g) PEC is close to that
of the B0}, state (see Figs. 1 and 2), resulting in a strong
coupling to high-lying levels (70 < v5 < 82) of the B0 state
because of favorable Franck—Condon overlaps.4 Further-
more, this perturbation is enhanced because for each
high-lying level in the B0 state, there is a nearby dis-
crete level in the lg(lﬂg) state whose energy separation
with the perturbed level is typically a few gigahertz. In
calculating the contribution of the 1, states, we monitor
the coupling strength between the B0} and lg(ll'[g) states
for high-lying levels (70<wv<82). For v;<78, the
coupling-strength \ is verified to be below 0.1, whereas at
the last four levels v3=79-82, \ can be as large as 0.4.
Therefore the second-order calculation for the lg(IHg)
state is primarily restricted to levels below vp="78.

Despite the inadequacy of the second-order calculation
for the 1g(1H ) perturbation allows a high-resolution ex-
amination of the lg(ll'lg) long-range potential. We find
that only a minor adjustment on the long-range PEC (see
Fig. 2) is needed for the calculation of &g to achieve good
agreement with the experimental data,'7 as shown in
Fig. 9. In the calculation the value of the mixing param-
eter g for the two 1, states is taken from Ref. 4 and kept
fixed.

Considering the linear independence of Eqgs. (19) and
(20) and expression (22), we perform calculations of dp
and eq@p to cross-check the 1, long-range PEC and the
mixing parameters « and B. The hyperfine parameter dp
is calculated with Eq. (20). In the case of eq@p, our calcu-
lation includes both major contributions in expression
(22) and other minor terms in Eq. (16). The results for dp
and eq@p agree reasonably well with experiment, as



Chen et al.

shown, respectively, in Figs. 10 and 11. Compared with
dp, our calculation of eq@p has a relatively large discrep-
ancy because the residual error of &(1,) is amplified by a
factor of 10 in the case of eq@p according to Eq. (19) and
expression (22). Once the mixing parameter B of the two
1, states is independently determined, the calculation of
dp and eq@p can be further improved by a global fit of the
1g(1Hg) long-range PEC to the three hyperfine parameters
dp, dp, and eq@p.

Unlike Cpg, 85, and dp, which result solely from pertur-
bations of external electronic states over the whole range
of internuclear separation, eq®p has both first-order and
second-order components that are important in different
regions. Our numerical analysis makes it possible to lo-
cate more accurately the regions at which each compo-
nent dominates. As shown in Fig. 11, at short internuclear
separation (R,<5 A), the perturbation from the external
states is negligible. The perturbation sets in at R,~5 A
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Fig. 9. Semilogarithmic plot of the second-order calculation of
the scalar spin—spin parameter . Filled circles, experimental
data'™"; open circles, calculations. In the calculation, the mixing
parameters for the two 1, and the two 1, states are fixed to «
=0.92 and B=0.84, respectively. Because the contribution from
1g(1l'lg) state is extremely sensitive to the corresponding long-
range potential, the 1g(1l'lg) long-range potential is fine tuned
(see Fig. 2) to obtain good agreement with the experimental
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Fig. 10. Semilogarithmic plot of the second-order calculation of
the tensor spin—spin parameter dp. Filled circles, experimental
data'™"; open circles, calculations. The calculation combines the
contributions from all six states [see Eq. (20)] that are deter-
mined in the calculation of §z. The calculation provides a cross-
check of the 1, long-range PEC and the mixing parameters « and
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Fig. 11. Second-order calculation of the electric q7 adrupole pa-
rameter eqQp. Filled circles, experimental data’™'"; open circles,
calculations. The calculation combines the contributions from the
same six states used for Figs. 9 and 10. The calculation provides
a cross-check of the 1, long-range PEC and the mixing param-
eters @ and B. The relatively large discrepancy is due to the fact
that the residual error of &(1,) (the contribution of the 1, states
to dp) has been amplified by a factor of 10 in the case of eq@p [see
Eq. (19) and expression (22)].

and increases along with the internuclear separation. Fi-
nally, it is worth noting that, at R,<5 A, the first-order
component of eq@p departs from the constant value deter-
mined by both the separated-atom basis and the linear
combination of atomic orbitals models with the decreasing
internuclear separation because of a combined effect of (1)
the nuclear quadrupole—quadrupole interaction and (2)
the distortion and overlapping of the two atomic electric
charge distributions.

4. CONCLUSIONS

We have performed second-order calculations of the four
hyperfine parameters Cg, &g, dg, and eq@p by using the
available molecular PECs and electronic wave functions
derived from the separated-atom basis set. We have
shown that, by dividing the six perturbing electronic
states into four subgroups, their contributions to the hy-
perfine parameters can be separated and directly com-
pared with the corresponding experimental data. For the
spin-rotation parameter Cp, the results for both rovibra-
tional dependence agree well with the experimental data
for a wide range of internuclear separations (R,> ~4 A),
and the admixture of the two 1, states is independently
determined as a=0.99. However, the calculations depart
from the experimental data at short internuclear separa-
tions (R,<~4 A), indicating the breakdown of the
separated-atom model. Moreover, calculations of the other
three hyperfine parameters verify the mixing parameter
of two 1, states and place a stringent constraint on the
long-range PECs of the relevant electronic states. On the
basis of our investigations described here and earlier
studies, ™" the effective hyperfine Hamiltonian developed
in Ref. 28 with second-order perturbation is proved to be
sufficiently accurate to describe the experimental obser-
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vations when strong perturbation from the 1, state is ab-
sent. The study provides an independent and quantitative
test on the separated-atom model and the related PECs.
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