FacebookTwitterYouTube RSS Feed

Experimental realization of atomtronic circuit elements in non-equilibrium ultracold atomic systems

TitleExperimental realization of atomtronic circuit elements in non-equilibrium ultracold atomic systems
Publication TypeThesis
Year of Publication2016
AuthorsCaliga, SC
Academic DepartmentPhysics
DegreePh.D.
Number of Pages166
Date Published04-2016
UniversityUniversity of Colorado
CityBoulder, CO
Abstract

Research in the field of atomtronics aims to develop a new paradigm for the use of ultracold atomic systems in a manner that mimics the functionality of electronic circuits and devices. Given the ubiquity of the electronic transistor and its application to a vast array of signal processing tasks, the development of its atomtronic counterpart is of signicant interest. This dissertation presents the experimental studies of two atomtronic circuit elements: a battery and transistor. Experiments are conducted in an atom-chip-based apparatus utilizing hybrid magnetic and optical trapping techniques that enable one to "pattern" atomtronic circuit elements. An atomtronic battery is realized in a double-well trapping potential in which a finite-temperature Bose-Einstein condensate is prepared in a non-equilibrium state to generate thermodynamic gradients that drive atom current  flow. Powered by the atomtronic battery, a triple-well atomtronic transistor is demonstrated, and quasi-steady-state behavior of the device is characterized. Results are found to be in agreement with a semiclassical model of the transistor that is also used to study the active properties of the device, including current gain. Based on these results, future directions regarding signal processing operations are proposed.