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Transition from perturbative to nonperturbative interaction in low-order-harmonic generation
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We present results of ab initio numerical calculations for low-order-harmonic generation as well as calculations
of the higher-order terms in the respective perturbative power-series expansions of the susceptibilities for third-
and fifth-order-harmonic generation. We find that the transition from perturbative to nonperturbative interaction in
these low-order nonlinear processes occurs at about 1013 W/cm2. Our findings confirm previous results that any
deviation from the predictions of lowest-order perturbation theory indicates that the perturbative series expansion
is not applicable and, if required, needs to be replaced by a nonperturbative treatment of the interaction between
the atom and the field. In particular, the results also show that the observation of low-order-harmonic yields
cannot be considered as a test of higher-order Kerr effects.
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I. INTRODUCTION

High-order-harmonic generation in intense short laser
pulses is a highly nonlinear process, which has been exten-
sively studied as a route to generate coherent bright x rays
and attosecond pulses (for a review, see, e.g., Ref. [1]). On
the other hand, low-order-harmonic generation (also, termed
below-threshold harmonics) in the strong-field regime has
received less attention. However, recent experiments [2–4]
have demonstrated the potential to generate bright coherent
low-order harmonics in the vacuum ultraviolet with photon
energies below the threshold of the ionization potential of
the target atom. These ultrafast sources have gained interest
as tools for ultrafast spectroscopy of electron wave-packet
dynamics in atoms and molecules [3] as well as for precision
measurements [2,4].

Beyond this renewed interest in low-order-harmonic gener-
ation for spectroscopic purposes, it has been proposed [5] that
the ratio of fifth- to third-order-harmonic generation offers a
stringent test to the controversially discussed role of higher-
order Kerr effects (HOKE) (for a review, see, e.g., Ref. [6]).
The HOKE debate was initiated by the consideration that
higher-order terms in the perturbative power-series expansion
of the electric susceptibility χω of a gas in an external electric
field E [7],

χω = χ (1)
ω + χ (3)

ω |E|2 + χ (5)
ω |E|4 + χ (7)

ω |E|6 + · · · (1)

are required in order to explain the experimentally observed
[8,9] (and, previously, theoretically predicted [10,11]) negative
slope in the electric susceptibility as a function of the peak laser
intensity in the middle of 1013 W/cm2.

Our recent theoretical studies of the electrical susceptibility
of atomic hydrogen have indicated [12] that the power-series
expansion Eq. (1) does not converge at intensities above about
2 × 1013 W/cm2 since the magnitudes of the higher-order
terms do exceed a significant fraction of the lowest-order non-
linear term. The calculations of the higher-order coefficients
were performed using a numerical basis-state method [13],
which also enabled us to determine the nonlinear electrical
susceptibility from the ab initio solution of the corresponding
Schrödinger equation. Comparison of the results of both kinds
of calculations let us conclude that a change in the intensity
dependence of the susceptibility has to be interpreted as

a signature of the nonperturbative interaction between the
intense laser light and the gas, whereas perturbative concepts,
such as HOKE, are not applicable.

In view of the renewed interest in strong-field below-
threshold harmonic generation and the proposed studies
regarding third- and fifth-order-harmonic generation in the
HOKE debate, it is interesting to ask whether or not sim-
ilar conclusions regarding the transition from perturbative
to nonperturbative interaction hold for low-order-harmonic
generation as well. To this end, we extend our previous studies
on the electrical susceptibility [12] and use the numerical
basis-state method to determine the first few coefficients of
the power-series expansion of the elements of the susceptibility
tensor for third- and fifth-order-harmonic generation. We also
calculate the harmonic spectrum generated by the interaction
of a short laser pulse with atomic hydrogen using the
direct numerical solution of the corresponding time-dependent
Schrödinger equation. This allows us to perform an ab initio
study of the generated power for each harmonic as a function
of the peak laser intensity at the single-atom level. The rapidly
increasing contribution of the higher-order terms as well as
the deviation of the intensity dependence of the harmonic
power from the power law, expected from perturbation theory,
enable us to estimate that the corresponding breakdown of
the perturbative power-series expansion occurs in the same
intensity regime as for the electrical susceptibility.

II. THEORETICAL APPROACHES

Despite providing complimentary insight, our perturbative
and ab initio methods are based on the same theoretical
framework, namely, a set of numerically obtained field-free
energy eigenstates, here for atomic hydrogen written as
(Hartree atomic units, e = � = m = 1, are used throughout)

|ψnlm(r)〉 = |Rnl(r)Ylm(�)〉, (2)

using the radial wave functions Rnl(r) and spherical harmonics
Ylm(�). The radial wave functions are obtained as numerical
solutions of the corresponding eigenvalue equation for the
radial field-free time-independent Schrödinger equation using
the Numerov method on a logarithmic one-dimensional finite-
space grid of size R0 with boundary conditions rRnl(r)|r=0 =
rRnl(r)|r=R0 = 0 [13]. Due to the finite size of the box the
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number of bound states is limited, and the continuum is
discretized. Hence, the energy eigenstates in this numerical
basis set can be indexed by a principal quantum number n.
In our calculations we consider the ground state of atomic
hydrogen and therefore can restrict the basis set to states with
m = 0 since �m = 0 in interactions with linearly polarized
fields.

In order to perform ab initio calculations for the polarization
response to a linearly polarized external field we use the field-
free representation of the dipole operator, given by

μ̂ =
∑

n,l,n′,l′
|ψnl0〉〈ψnl0|ẑ|ψn′l′0〉〈ψn′l′0|, (3)

and propagate the time-dependent Schödinger equation using
the Crank-Nicholson method [13],

[Ĥ0 + E(t)μ̂]|�(r,t)〉 = i
∂

∂t
|�(r,t)〉, (4)

where Ĥ0 is the diagonal field-free Hamiltonian and E(t) is of
the form

E(t) =
√

I sin2

(
πt

T0

)
sin(ωt), (5)

with I as the intensity and T0 and ω as the pulse duration and
central frequency of the field, respectively. We then determine
the low-order-harmonic spectra by calculating the Fourier
transform of the dipole moment,

P (ω) = FT [μ(t)](ω), (6)

where μ(t) is the time-dependent expectation value of μ̂ from
Eq. (3).

In Fig. 1 we present an example for a low-order-harmonic
spectrum generated at a driver wavelength of 1600 nm, a
peak intensity of 5 × 1013 W/cm2, and a pulse duration of
10 cycles. The results have been determined for a box size of
R0 = 1000 a.u., a time step of �t = 0.05 a.u., and a maximum
principle quantum number nmax = 2000 as well as lmax = 70.
The convergence of the results with respect to the size of the
radial box is shown by the relative error between the results
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FIG. 1. Results of ab initio numerical calculations for a low-
order-harmonic spectrum generated by a driver laser pulse at a central
wavelength of 1600 nm, a peak intensity of 5 × 1013 W/cm2, and a
pulse length of 10 cycles. The inset shows the relative error between
calculations using radial box sizes of Rmax = 500 and Rmax = 1000.

for box sizes of R0 = 500 and R0 = 1000. Please note that the
minima in the error correspond to the peaks in the harmonics.

On the other hand, we use the eigenstates of the field-free
energy basis to calculate the N th coefficient of the perturbative
power-series expansion of the ground-state wave function in
the external field as given in Ref. [7],

|ψ (N)(ω1, . . . ,ωN )〉

=
∑

jN �=j0

· · ·
∑
j1 �=j0

[
N∏

i=1

〈ψji
|μ̂E(ωi)e−iωi t |ψji−1〉

ωji
− ωj0 − ∑i

k=1 ωk

]
|ψjN

〉,

(7)

where ωj0 is the ground-state energy, ωk and ωi are the
participating frequencies of the electric field, ji denotes the
state in the numerical basis set, and μ̂ is given by Eq. (3).
The lifetimes of the excited states are neglected since all
calculations performed in this study are far from resonance.
The N th-order term in the expansion of the single atom
polarization in an overall nω process can then be written

〈P(N)(nω)〉 = P
N∑

j ′=0

〈ψ (j ′)|μ̂|ψ (N−j ′)〉, (8)

where n = 1,3,5, . . . ,
∑

j ωj = nω, and ωj = ±ω. P refers
to the average of all permutations of the frequencies. The
symmetry of the electric field with respect to positive and
negative frequency components allows us to rewrite Eq. (8)
as [7]

〈P(N)(nω)〉 = ε0χ
(N)
nω

N∏
i=1

E(ωi), (9)

with χ (N)
nω as the N th-order term of the susceptibility at fre-

quency nω due to contributing electric fields at frequencies ωi .
As for the ab initio calculations, we performed test

calculations to ensure that the results of our calculations for
the terms in the perturbation expansion of the susceptibility
for low-order-harmonic generation are converged with respect
to the size of the box R0 and the size of the basis set nmax. We
note that the maximum angular momentum is determined by
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FIG. 2. (Color online) Results for perturbative power-series co-
efficients χ (N)

nω for n = 1 (dashed-dotted lines), n = 3 (solid lines),
and n = 5 (dotted lines) as a function of nmax.
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lmax = (N + 1)/2, where N is the order of the coefficient
calculated. In general, we have found that a box size of
R0 = 500 is sufficient for the present purpose. In Fig. 2 we
show results for χ (N)

nω for n = 1 (dashed-dotted lines), n = 3
(solid lines), and n = 5 (dotted lines) as a function of nmax

for R0 = 500 at a laser wavelength of 1600 nm. In general,
we observe that the contributions from the bound states are
positive, reflected in the increase in the susceptibilities for
low nmax, and those from the continuum states are negative,
corresponding to the decrease in the susceptibilities for
higher nmax.

III. INTENSITY DEPENDENCE
OF LOW-ORDER-HARMONIC GENERATION

We have applied both approaches to investigate the intensity
dependence of low-order harmonics and the transition from
perturbative to nonperturbative interaction. In Fig. 3 we present
the integrated power of the (a) first, (b) third, and (c) fifth
harmonics as a function of peak laser intensity at a central
wavelength of 1600 nm and a pulse length of 10 cycles as
obtained from our ab initio calculations. For these results
we have calculated the harmonic spectrum and integrated the
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FIG. 3. Results of ab initio calculations for the integrated har-
monic power (solid circles with solid lines) for the (a) first, (b) third,
and (c) fifth harmonics as a function of the peak laser intensity of a
laser pulse of 10 cycles at a wavelength of 1600 nm. The numerical
results are compared to a perturbative I n power-law fit, which is
matched to the ab initio results at the lowest intensity. The insets show
the relative error between ab initio results and power-law predictions
with respect to the ab initio results.

signal for the power of the nth harmonic over the energy range
[(n − 1)ω,(n + 1)ω]. We compare the results of our numerical
calculations with the power law I n, which is expected for a
perturbative n-photon process. The predictions from the power
law were matched to the numerical results at low intensities.
The inset in each of the panels shows the relative error between
the ab initio results and the power-law predictions with respect
to the ab initio results.

The results show that in the intensity regime between 1012

and a few times 1013 W/cm2 the ab initio results start to
deviate from the respective power law. This is an indication
of the transition from a perturbative to a nonperturbative
electron-field interaction. These results are in agreement with
the onset of other nonperturbative phenomena, e.g., above
threshold ionization [14] and high-order-harmonic generation
[15,16], in the same intensity regime.

Based on the ab initio results, we expect that the perturba-
tive power-series expansion of the susceptibility corresponding
to the process of low-order-harmonic generation should break
down in this intensity range as well. In order to test this

FIG. 4. Results for the ratio of higher-order terms to the lowest-
order nonlinear term in the perturbative series expansion for (a) χω,
(b) χ3ω, and (c) χ5ω. Also shown is the ratio of the sum of all higher-
order terms calculated with respect to the lowest-order term (solid
lines).
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expectation, we have calculated the first few terms in the
expansion for χω, χ3ω, and χ5ω at 1600 nm. We study the
relative contribution of higher-order terms in the expansion
by presenting their ratios with respect to the lowest-order
nonlinear term in Fig. 4. Also shown is the ratio of the sum of all
higher-order terms calculated to the lowest-order term. From
the results we observe the same behavior as previously reported
for the electrical susceptibility χω at a shorter wavelength
[12], namely, each higher-order term is much smaller than
the lowest-order term, indicating the convergence of the
corresponding power-series expansion, at the lowest intensities
studied. On the other hand, the breakdown of the series at the
highest intensities is obvious as well since the contributions of
the higher-order terms exceed that of the lowest-order term.
We further note that in each case the sum of the calculated
higher-order terms reaches about 10% of the lowest-order term
for intensities in the range of 1 × 1013 to 2 × 1013 W/cm2.
Therefore, this limit can be considered as an indication for the
breakdown of a perturbative series expansion in strong-field
processes [17].

To summarize, our results for low-order-harmonic genera-
tion from both ab initio as well as perturbative calculations
show the same onset of a transition from perturbative to
nonperturbative interaction between the atom and the field as
the previously reported results for the electrical susceptibility
χω at a shorter wavelength [12]. It is therefore not surprising
that previous studies on low-order-harmonic yields [18–22]

did not help in resolving the question about the significance
of higher-order Kerr effects in the filamentation of short
higher-power laser pulses in gaseous media. In contrast, we
conclude that any deviations from the predictions of the
lowest-order perturbation theory for the polarization (and
other observables) should be interpreted as a signature for
the nonperturbative character of the electron-field interaction.
In particular, our results also show that a quantitative analysis
of strong-field below-threshold harmonic generation requires
a nonperturbative theoretical approach as, e.g., introduced in
Ref. [2].
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[18] P. Béjot, E. Hertz, J. Kasparian, B. Lavorel, J.-P. Wolf, and
O. Faucher, Phys. Rev. Lett. 106, 243902 (2011).

[19] J. Ni, J. Yao, B. Zeng, W. Chu, G. Li, H. Zhang, C. Jing,
S. L. Chin, Y. Cheng, and Z. Xu, Phys. Rev. A 84, 063846
(2011).

[20] G. O. Ariunbold, P. Polynkin, and J. V. Moloney, Opt. Express
20, 1662 (2012).

[21] M. Bache, F. Eilenberger, and S. Minardi, Opt. Lett. 37, 4612
(2012).

[22] J. M. Brown, E. M. Wright, J. V. Moloney, and M. Kolesik, Opt.
Lett. 37, 1604 (2012).

023402-4

http://dx.doi.org/10.1038/nphoton.2010.256
http://dx.doi.org/10.1038/nphoton.2010.256
http://dx.doi.org/10.1038/nphoton.2010.256
http://dx.doi.org/10.1038/nphoton.2010.256
http://dx.doi.org/10.1038/nphys1398
http://dx.doi.org/10.1038/nphys1398
http://dx.doi.org/10.1038/nphys1398
http://dx.doi.org/10.1038/nphys1398
http://dx.doi.org/10.1038/nphoton.2014.83
http://dx.doi.org/10.1038/nphoton.2014.83
http://dx.doi.org/10.1038/nphoton.2014.83
http://dx.doi.org/10.1038/nphoton.2014.83
http://dx.doi.org/10.1038/nphoton.2014.132
http://dx.doi.org/10.1038/nphoton.2014.132
http://dx.doi.org/10.1038/nphoton.2014.132
http://dx.doi.org/10.1038/nphoton.2014.132
http://dx.doi.org/10.1364/OL.35.002550
http://dx.doi.org/10.1364/OL.35.002550
http://dx.doi.org/10.1364/OL.35.002550
http://dx.doi.org/10.1364/OL.35.002550
http://dx.doi.org/10.1088/0034-4885/77/1/016401
http://dx.doi.org/10.1088/0034-4885/77/1/016401
http://dx.doi.org/10.1088/0034-4885/77/1/016401
http://dx.doi.org/10.1088/0034-4885/77/1/016401
http://dx.doi.org/10.1364/OE.17.013429
http://dx.doi.org/10.1364/OE.17.013429
http://dx.doi.org/10.1364/OE.17.013429
http://dx.doi.org/10.1364/OE.17.013429
http://dx.doi.org/10.1364/OE.18.003011
http://dx.doi.org/10.1364/OE.18.003011
http://dx.doi.org/10.1364/OE.18.003011
http://dx.doi.org/10.1103/PhysRevLett.104.103903
http://dx.doi.org/10.1103/PhysRevLett.104.103903
http://dx.doi.org/10.1103/PhysRevLett.104.103903
http://dx.doi.org/10.1103/PhysRevLett.104.103903
http://dx.doi.org/10.1103/PhysRevA.66.023811
http://dx.doi.org/10.1103/PhysRevA.66.023811
http://dx.doi.org/10.1103/PhysRevA.66.023811
http://dx.doi.org/10.1103/PhysRevA.66.023811
http://dx.doi.org/10.1088/1367-2630/10/5/053006
http://dx.doi.org/10.1088/1367-2630/10/5/053006
http://dx.doi.org/10.1088/1367-2630/10/5/053006
http://dx.doi.org/10.1088/1367-2630/10/5/053006
http://dx.doi.org/10.1103/PhysRevA.90.013426
http://dx.doi.org/10.1103/PhysRevA.90.013426
http://dx.doi.org/10.1103/PhysRevA.90.013426
http://dx.doi.org/10.1103/PhysRevA.90.013426
http://dx.doi.org/10.1103/PhysRevA.86.013410
http://dx.doi.org/10.1103/PhysRevA.86.013410
http://dx.doi.org/10.1103/PhysRevA.86.013410
http://dx.doi.org/10.1103/PhysRevA.86.013410
http://dx.doi.org/10.1103/PhysRevLett.42.1127
http://dx.doi.org/10.1103/PhysRevLett.42.1127
http://dx.doi.org/10.1103/PhysRevLett.42.1127
http://dx.doi.org/10.1103/PhysRevLett.42.1127
http://dx.doi.org/10.1364/JOSAB.4.000595
http://dx.doi.org/10.1364/JOSAB.4.000595
http://dx.doi.org/10.1364/JOSAB.4.000595
http://dx.doi.org/10.1364/JOSAB.4.000595
http://dx.doi.org/10.1103/PhysRevA.39.5751
http://dx.doi.org/10.1103/PhysRevA.39.5751
http://dx.doi.org/10.1103/PhysRevA.39.5751
http://dx.doi.org/10.1103/PhysRevA.39.5751
http://dx.doi.org/10.1103/PhysRevLett.106.243902
http://dx.doi.org/10.1103/PhysRevLett.106.243902
http://dx.doi.org/10.1103/PhysRevLett.106.243902
http://dx.doi.org/10.1103/PhysRevLett.106.243902
http://dx.doi.org/10.1103/PhysRevA.84.063846
http://dx.doi.org/10.1103/PhysRevA.84.063846
http://dx.doi.org/10.1103/PhysRevA.84.063846
http://dx.doi.org/10.1103/PhysRevA.84.063846
http://dx.doi.org/10.1364/OE.20.001662
http://dx.doi.org/10.1364/OE.20.001662
http://dx.doi.org/10.1364/OE.20.001662
http://dx.doi.org/10.1364/OE.20.001662
http://dx.doi.org/10.1364/OL.37.004612
http://dx.doi.org/10.1364/OL.37.004612
http://dx.doi.org/10.1364/OL.37.004612
http://dx.doi.org/10.1364/OL.37.004612
http://dx.doi.org/10.1364/OL.37.001604
http://dx.doi.org/10.1364/OL.37.001604
http://dx.doi.org/10.1364/OL.37.001604
http://dx.doi.org/10.1364/OL.37.001604



