
PHYSICAL REVIEW A 89, 013404 (2014)

Attosecond-streaking time delays: Finite-range property and comparison
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We theoretically study time delays obtained using the attosecond-streaking technique. To this end, we compute
time delays by numerically solving the corresponding time-dependent Schrödinger equation and analyze the
delays using two classical methods, namely, a perturbative approach and a full numerical solution of Newton’s
equation describing the motion of the photoelectron in the continuum. A good agreement between the quantum
streaking results and those from the full classical solution is found. This indicates that the streaking time delay
arises from the continuum dynamics of the electron in the coupled potential of the Coulomb and streaking
fields, while the transition of the photoelectron from the bound state to the continuum occurs instantaneously
upon absorption of the photon. We further analyze the variation of the time delay with respect to the delay
between the ionizing XUV pulse and a long streaking pulse, its dependence on the polarization direction of the
streaking pulse, and the influence of the shape of the streaking pulse and/or additional static electric fields on
the numerically obtained time delays. The results are interpreted based on the previously revealed property that
the attosecond-streaking time delay depends on the finite region in space over which the electron propagates
between its instant of transition into the continuum and the end of the streaking pulse.
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I. INTRODUCTION

The development in laser technology in recent years, in
particular, the generation of attosecond (as) extreme ultra-
violet (XUV) laser pulses, has provided the possibility of
observing and even controlling electron dynamics in atoms and
molecules on an ultrafast time scale (for a recent review, see
[1]). The attosecond streak camera technique [2] is an example
of a method which is used to retrieve temporal information
in ultrafast processes. The basic idea of this technique is
that the momentum of a photoelectron, which is ionized by
an ultrashort XUV pulse from a target, is streaked by an
additional laser pulse, usually a near-infrared (IR) pulse. The
final momentum of the electron then depends on the vector
potential of the streaking field at the instant of the transition of
the electron into the continuum. By scanning the relative delay
between the two pulses, time information is mapped onto the
streaking trace, i.e., the final electron momentum as a function
of the relative delay between the two pulses.

In a recent application of the attosecond-streaking tech-
nique a temporal offset of 21 as between streaking traces of
electrons emitted from 2s and 2p orbitals in a neon atom
was reported by Schultze et al. [3]. This temporal offset was
interpreted as the time delay between the emission of the 2s

electron and that of the 2p electron. The observation initiated
theoretical analysis of the origin of the measured temporal
offset (e.g. [4–21]). Part of the debate is related to the role
of the Wigner-Smith (WS) time delay [22,23], which is the
time delay a particle accumulates in a potential compared to
a free particle with the same asymptotic final momentum.
However, for a long-range potential, such as the Coulomb
interaction, the WS time delay diverges (e.g. [8–10,23]) and
therefore cannot explain the observed finite streaking time
delay. More recently, the temporal offset is often separated
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into a sum of two contributions (e.g. [11–15]), namely, a WS
time delay arising due to the short-range part of the potential,
including multielectron effects (e.g. [4,15–17]) and potentially
polarization effects (e.g. [8,18,19]), and a delay due to the
coupling between the streaking field and the Coulomb field.
For the latter contribution it has been discussed whether the
short- and/or the long-range parts of the Coulomb potential
have to be taken into account [11,14].

We have recently shown [21] that, alternatively, the ob-
served time delay can be written as a sum or integral of
piecewise field-free time delays weighted by the instantaneous
streaking-field strength, relative to the streaking field strength
at the instant of transition of the electron into the continuum.
The analysis was based on results of quantum streaking
simulations as well as of classical electron dynamics in the
streaking field after the interaction with the XUV field. It led
us to the interpretation that the observed time delay depends
on the finite time between the transition into the continuum
and the end of the streaking pulse (or, alternatively, the finite
region in space along the polarization direction over which the
electron propagates during this time interval). Among others,
this insight removes concerns related to the divergence of the
WS time delay from the theoretical analysis.

In the present article we study the following aspects related
to the finite-range time delays. First, we compare the results
of quantum streaking simulations obtained by solving the
time-dependent Schrödinger equation (TDSE) with those of
two classical approaches. These are the full numerical solution
of the corresponding Newton’s equation of the electron
dynamics in the continuum as well as an approximate solution,
in which perturbation theory is used to treat the Coulomb
potential in first order. Our results support earlier conclusions
[8,17,21] that full classical calculations can reproduce the
quantum streaking results. On the other hand, the results of
the perturbative approach deviate from both the full classical
and the quantum results. This discrepancy is discussed in view
of the interpretation of the temporal offsets and the role of
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laser-potential coupling. In the second part of the paper we
further address the relevance of the finite-range property of
the streaking time delays and analyze, in particular, the role of
the shape and the polarization direction of the streaking pulse
as well as the influence of additional static electric fields on
the temporal offsets.

The paper is organized as follows. In Sec. II we present
the theoretical methods used to calculate the temporal offset
(or time delay) in the streaking experiment, both quantum
mechanically and classically. For the analysis based on
classical physics, we have applied both a perturbative approach
and the full numerical solution. The time delays obtained
from these two classical formulas are then compared with
the TDSE results. The good agreement between the results
from the full numerical solution and those from the TDSE
confirm previous conclusions that the streaking time delay
arises from the electron dynamics in the coupled field of the
streaking field and the atomic potential. The limitations of
the perturbative approach are discussed as well. In Sec. III we
show that for a long streaking pulse, time delays extracted from
different cycles of the pulse can vary. We further illustrate,
using two two-dimensional (2D) examples, the relevance of
the polarization direction of the streaking field on the results.
The influence of a pedestal in the streaking field as well as
of an additional static field on the streaking time delay is also
studied. We conclude with a summary of the results, in Sec. IV.

II. STREAKING SIMULATIONS AND
CLASSICAL ANALYSIS

In this section we briefly review the techniques used to
extract time offsets (or delays) from numerical simulations
of a streaking experiment. We then continue to discuss
two classical approaches to describing the dynamics of the
photoelectron in the streaking field, in which either the effect
of the Coulomb field of the parent ion is considered to first
order using perturbation theory or its effect together with the
coupling with the streaking field is fully taken into account.

A. Quantum streaking simulations

To simulate a streaking experiment, we used standard
techniques to numerically solve the TDSE (Hartree atomic
units, e = m = � = 1, are used throughout the paper, unless
otherwise stated),

i
∂�(r,t)

∂t
=

[
p2

2
+ V (r) + [EXUV(t) + Es(t)] · r

]
�(r,t),

(1)
where p is the momentum operator and

E(t) = E0 sin2(πt/T ) cos(ωt + φ) ẑ (2)

is the expression used for both the photoionizing XUV and the
streaking laser fields, EXUV(t) and Es(t), respectively. Both
fields are considered to be linearly polarized in the z direction,
where E0 is the peak amplitude, T is the pulse duration, ω is
the central frequency, and φ is the carrier-envelope phase of
the respective field. We solved the TDSE on a grid in space
and time using the Crank-Nicolson method. In each simulation
we propagated the wave function on the grid for a sufficiently
long time until both laser pulses ceased and the ionized wave
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FIG. 1. (Color online) (a) Streaking traces obtained from numeri-
cal simulations for photoemission in the 1D Coulomb potential VC(z).
An eight-cycle streaking pulse with Is = 1 × 1012 W/cm2, λs =
800 nm, and φs = −π/2 was used in the calculations. We compare the
streaking trace obtained from the TDSE [solid (blue) line] with that
from the original streaking formula [Eq. (4); dashed (green) line].
(b) An enlargement of (a) to show the momentum shift �k, the
streaking time delay �ts , and the relation between them.

packet was far from the ionic core. We confirmed that in all
simulations the outgoing wave packets stay on the grid and do
not reach its boundaries.

To obtain the momentum distribution we spatially separated
the ionized wave packet from the total wave function, which
is possible due to the long propagation times used in the
simulations, and then performed a Fourier transform. We have
confirmed that the small error due to the projection onto the
plane wave is negligible since we have propagated the ionized
wave packet sufficiently far away from the nucleus. By varying
the delay τ between the XUV and the streaking pulses, we
obtained the streaking trace, in which the momentum of the
photoelectron kf is given as a function of τ .

An example for a streaking trace, over about the central
cycle of an eight-cycle streaking pulse at 800 nm and
1 × 1012 W/cm2, is shown in Fig. 1(a). In this set of simula-
tions we used a 1D soft-core Coulomb-like potential, given by

V (z) = VC(z) = − Z√
z2 + a

(3)

centered at z = 0 with effective charge Z = 3.0 and soft-core
parameter a = 2.0. Typical grid parameters used in the 1D
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calculations were �z = 0.05, �t = 0.01, and N = 280 000
(i.e., the grid extends from −7000 to 7000).

In Fig. 1(a) the numerical streaking trace (solid line) is
compared with the predictions of the original streaking formula
(dashed line) [2],

k
(0)
f,z(τ ) = k0,z − As(τ ), (4)

where k0,z is the streaking-field-free asymptotic momentum
of the photoelectron and As(τ ) is the vector potential of the
streaking field at time τ . In the context of the present analysis
it is often sufficient to study 1D systems, since we consider
linearly polarized streaking pulses, and thus, the streaking field
interacts with the electron along the polarization direction.

As has been pointed out before [e.g. [7,8,11,12,19]; see
also the enlarged view in Fig. 1(b)], the numerically obtained
distribution has a temporal offset �ts with respect to the vector
potential at τ . This offset is related to a momentum shift �k

compared to the momentum given by the original streaking
formula. In general, �ts can be approximately extracted by
fitting the momentum components of the photoelectron as

kf (τ ) = k0 − α As(τ + �ts), (5)

or as

kf,z(τ ) = k0,z − αAs(τ + �ts), (6)

in the case of a linearly polarized streaking pulse. α and �ts
can be determined using the least-squares method. For further
analysis it is useful to expand Eq. (6) to first order as

kf,z(τ ) � k0,z − αAs(τ ) + αEs(τ )�ts, (7)

which is justified if ωs�ts � 1 since As(τ ) has a sinusoidal
shape. In this approximation the offset �ts can be then written
as [for Es(τ ) �= 0]

�ts � kf,z(τ ) − k0,z + αAs(τ )

αEs(τ )
. (8)

Results of classical calculations below suggest that τ coincides
with the instant in time of the transition of the electron from
the bound state to the continuum, ti , which we also denote
the time of ionization, and �ts depends on τ as well as the
duration Ts of the streaking pulse.

B. Classical approaches

In the original streaking formula, Eq. (4), the effect of the
interaction between the electron in the continuum and the
parent ion is neglected. To analyze the role of the Coulomb
potential as well as the coupling between the Coulomb
potential and the streaking field on the observed momentum
difference �k and hence the temporal offset �ts , a classical
analysis of the electron dynamics in the continuum turns out to
be useful. For a linearly polarized streaking pulse the classical
dynamics along the polarization direction is determined by

dkz

dt
= −Es(t) − dV

dz
. (9)

1. Perturbative approach

One approach to solving Eq. (9) is to use perturbation theory
by assuming |Es | � | dV

dz
|. To first order, the final asymptotic

momentum is then given by [assuming A(t) = 0 and V (z) = 0
for t → ∞]

k
(1)
f,z(ti) = k

(0)
f,z(ti) + �k

(1)
f,z(ti)

= ki,z − As(ti) + V (zi)

ki,z

+
∫ ∞

ti

Es(t)V (z(0)(t))

k
(0)
z (t)2

dt

� k0,z − As(ti) +
∫ ∞

ti

Es(t)V (z(0)(t))

k
(0)
z (t)2

dt, (10)

where k0,z =
√

k2
i,z + 2V (zi) � ki,z + V (zi)/ki,z is, again, the

streaking-field-free asymptotic momentum,

z(0)(t) = zi + [ki − As(ti)] (t − ti) +
∫ t

ti

As(t
′)dt ′, (11)

and

k(0)
z (t) = ki,z − As(ti) + As(t) (12)

are the zeroth-order solutions for the position and momentum
of the electron. ti , zi , and ki,z are the initial time, position,
and momentum of the electron after its transition into the
continuum.

Please note that for a finite duration Ts of the streaking
pulse, i.e., Es(t) = 0 for t � Ts , the limits of the integral in
Eq. (10) are finite. Assuming an instantaneous response of the
electron to the ionizing XUV field in the streaking experiment,
we set τ = ti . Upon this assumption, Eq. (8) yields

�ts �
(α − 1)As(ti) + ∫ Ts

ti

Es (t)V (z(0)(t))
[k(0)(t)]2 dt

αEs(ti)
. (13)

We note that Eq. (10) is equivalent to Eq. (25) in Ref. [24],
in which the authors used a quantum approach to calculate
the momentum shift induced by the so-called Coulomb-laser
coupling effect in laser-assisted photoionization based on
the eikonal approximation. This result was latter adopted in
Ref. [11] to study the influence of the streaking field on the
measured time delay in a streaking experiment. However, one
may note that, similarly to what we have done here, the formula
derived in Ref. [24] was based on the assumption that the
laser field is rather strong (e.g., 1.5 × 1014 W/cm2 in one of
the numerical examples in Ref. [24]), which is usually not
applicable for a streaking experiment (streaking intensities
are typically in the range of 1 × 1010 to 1 × 1012 W/cm2).
Below we therefore compare the results of the perturbative
approach with the numerical solution for classical electron
dynamics in order to test the applicability of the perturbative
approach.

2. Numerical solution

The use of perturbation theory can be avoided by integrating
Eq. (9), which yields the final asymptotic momentum,

kf,z(ti) =
√

k2
i,z + 2V (zi) − 2

∫ ∞

ti

Es(t)kz(t)dt

=
√

k2
0 − 2

∫ ∞

ti

Es(t)kz(t)dt . (14)

013404-3
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Assuming an instantaneous response (i.e., τ = ti) and finite
streaking pulse duration T , the temporal offset, Eq. (8), is then
given by

�ts �
√

k2
0 − 2

∫ T

ti
Es(t)kz(t)dt − k0 + αAs(ti)

αEs(ti)
, (15)

which can be solved numerically.
It has previously been pointed out that the results of streak-

ing simulations strongly depend on the location of ionization,
zi [8,11], and/or matching the correct asymptotic conditions
[13]. Accurate results can be obtained, e.g., by sampling the
initial conditions in classical Monte Carlo calculations (see,
e.g. [8]). In test calculations we have found that the results
of such calculations can often be well reproduced by using
the most probable position of the electron of the respective
initial quantum state. To make use of the classical analysis,
either in the perturbative approach or by direct numerical
integration, we further determine the fitting parameter α such
that the temporal offset �ts remains approximately constant
for application of the ionizing XUV pulse over one cycle of
the streaking pulse (see Fig. 2 in Ref. [21]).

C. Comparison of results from different approaches

In order to test the accuracy of the predictions of the
two classical approaches we compare in Fig. 2 the results
of quantum streaking simulations (black circles) for the
temporal offset �ts with the classical predictions, Eq. (13)
[dashed (blue) lines] and Eq. (15) [solid (red) lines], for
photoionization of an electron in (a) the 1D Coulomb potential
VC(z), Eq. (3), with Z = 3.0 and a = 2.0; (b) the combination
of the 1D Coulomb and Gaussian potentials (the electron
was initially bound in the ground state of the Coulomb
potential),

V (z) = VCG(z) = − Z√
z2 + a

+ V0e
−( |z|−z0

σ
)2

, (16)

with Z = 3.0 and a = 2.0 for the Coulomb potential and V0 =
−0.5 and σ = 2.0 for the Gaussian potential centered at z0;
and (c) a 3D Coulomb potential of the form

V (r) = −Z

r
, (17)

with Z = 1.0 and 2.0 for the H atom and He ion, respectively.
The streaking time delays �ts in the 1D quantum simu-

lations were obtained by scanning the central cycle of the
streaking field and then fitting the trace using Eq. (6). To ionize
the electron initially bounded in the 1D Coulomb potential,
we have used an XUV pulse with IXUV = 1 × 1015 W/cm2,
ωXUV = 100 eV, TXUV = 600 as, and φXUV = −π/2. The
parameters of the streaking pulse were Is = 1 × 1012 W/cm2,
λs = 800 nm, Ns = 3 [Fig. 2(a)] or Ns = 8 [Fig. 2(b)],
and φs = −π/2. The 3D quantum results in Fig. 2(c) were
extracted from Ref. [8]. In the classical calculations we
assumed a transition to the continuum at the center of the
XUV pulse (i.e., ti = τ = TXUV/2).

The comparison reveals that the results of the quantum
streaking simulations (black circles) and the full classical
calculations [solid (red) lines] are in excellent agreement with
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FIG. 2. (Color online) Comparison of streaking time delays from
quantum streaking simulations (black circles) with classical results
from the perturbative approach [dashed (blue) lines] and the full
numerical solution [solid (red) lines]. In our analysis we considered
three potentials: (a) the 1D Coulomb potential [VC(z)], (b) the
combination of 1D Coulomb and Gaussian potentials [VCG(z)], and
(c) the 3D Coulomb potential [V (r)].

each other. In the present set of calculations the difference be-
tween the quantum and the full classical results does not exceed
2 as, which shows that the numerical streaking simulations can
be well analyzed and interpreted using a classical approach.
Such a conclusion has also been reached based on the results
of classical trajectory Monte Carlo calculations in Ref. [8].
This supports the assumptions made in the classical approach
that the transition of the electron from the bound state to the
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FIG. 3. (Color online) Relative difference in the momentum shift
�k calculated classically from the perturbative approach vs the full
numerical solution for VC(z) [solid (blue) line with circles] and
VCG(z) [z0 = 200; solid (green) line with asterisks]. The relative
difference is defined as |(�k(pert) − �k(numerical))/�k(numerical)|. We
have considered photoemission of an electron with a final asymptotic
momentum of 2.0, which is streaked by a three-cycle, 800-nm laser
pulse.

continuum occurs instantaneously upon application of the
XUV pulse (i.e., τ = ti) and the observed temporal offset �ts ,
or time delay, arises due to the propagation of the photoelectron
in the continuum.

On the other hand, the comparison further shows that
the results of the perturbative classical approach [dashed
(blue) lines] do not agree agree either with those of the
quantum simulations (black circles) or with the full classical
calculations [solid (red) lines]. We find discrepancies of more
than 30 as compared to the quantum results and the full
classical results in some of our present calculations [e.g.,
the low-energy part in Fig. 2(a)]. This degree of deviation
between the two classical approaches persists for intensities
of the streaking field up to 1014 W/cm2. We exemplify this by
showing in Fig. 3 the relative difference between the results
for the momentum shift �k, obtained from the two classical
approaches for both VC(z) [solid (blue) line with circles]
and VCG(z) [solid (green) line with asterisks]. We note that,
in general, results of the perturbative approach and the full
numerical solution tend to agree only for high streaking-field
intensities, which would induce ionization from the target by
the streaking field itself.

We can therefore further conclude that the discrepancy in
the results of the perturbative classical approach versus the
quantum streaking simulations does arise from the first-order
approximation of the Coulomb potential, and not from the
use of classical theory itself. It appears that the transition
of the electron from the bound state into the continuum in
photoionization occurs at distances at which the perturbation
condition |Es | � | dV

dz
| is not fulfilled for moderate streaking-

field strengths. This conclusion is further supported by the
results for the combination of the Coulomb and Gaussian
potentials [VCG(z)]. In this case the final time delay has two
contributions, one resulting from the Coulomb potential and
the other from the rather weak Gaussian potential. In test
calculations we studied both contributions independently and

found that in the present results the deviation between the two
classical results arises from the Coulomb potential alone. This
can also be seen in the results in Fig. 2(b), as the difference
between the two classical results is independent of the position
of the Gaussian potential.

Before proceeding, we briefly discuss the option to extend
the perturbative classical result for the analysis of streaking
calculations. The deviations found for the first-order approxi-
mation can be significant. It remains to be studied if higher
order corrections can improve the results sufficiently or a
nonperturbative treatment becomes necessary. Alternatively,
it might be more interesting to partition the space into an
inner region close to the nucleus and an outer region, with
|Es | � | dV

dz
| fulfilled for the outer one. Then an application

of the perturbative result for the time delay related to the
outer region appears to be satisfied. We may point out that
the (perturbative) eikonal approximation was indeed initially
introduced in the context of strong-field ionization [25]. For
strong fields, in contrast to weak-field photoionization, the
perturbative condition is usually well satisfied for distances
beyond the tunnel exit, at which the electron enters the
continuum. Results of previous theoretical calculations [12]
indicate that it might then be useful to approximate the time
delay in the inner region by the WS time delay for the
short-range part of the potential. Of course, the quality of
such an approximation should depend on the potential of
interest, the streaking-field strength, and other parameters,
which would determine the partition between the inner and the
outer regions and the range of the short- vs long-range parts of
the potential. We did not further investigate this option, since
the full classical solutions are in excellent agreement with the
present quantum streaking results and therefore provide a good
starting point for our further analysis.

III. FINITE-RANGE PROPERTY OF STREAKING
TIME DELAYS

As discussed in the previous section, the agreement between
the quantum streaking results and the full classical results
obtained using Eq. (15) implies that the temporal offset in
the streaking calculation arises due to the propagation of the
electron in the continuum after the transition from the bound
state upon an instantaneous response to the XUV ionizing
pulse. Furthermore, Eq. (15) shows that the time delay depends
on the finite time between the transition into the continuum
and the end of the streaking pulse, which has been previously
confirmed by quantum streaking simulations [21]. In this
context it is also interesting to recall that within the classical
analysis the time delay can be also approximated as [21]

�ts �
N∑

j=1

Es(tj )

Es(ti)
�t

(j )
field−free, (18)

where �t
(j )
field−free is the streaking-field-free time delay that the

electron accumulates during its propagation in the time interval
[tj ,tj + δt] and over the related finite region [zj ,zj + δz] of
the potential compared to the propagation of a free particle
over the same distance in space. This approximation shows
that the piecewise field-free time delays are weighted by the
instantaneous streaking-field strengths Es(tj ) relative to the
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field strength at the instant of transition into the continuum,
Es(ti). We note that the oscillations of the time delays in
Fig. 2(b) can be readily explained by Eq. (18); this has been
observed and explained in our earlier publication [21]. In this
section we analyze and discuss a few consequences of this
finite-range property of the temporal offsets.

A. Variation of the time delay over different cycles
of a streaking pulse

According to our analysis the time delay �ts depends on
the time interval between transition of the electron into the
continuum, ti , and the end of the streaking pulse, Ts . We
therefore expect that in a long streaking pulse the time delay,
extracted from different cycles of the streaking pulse, varies,
since, for emission of the electron by the XUV pulse in the
rising part of the streaking pulse, it will propagate over a
larger distance until the streaking pulse ceases compared to
the case where the electron is released in the trailing part of
the streaking pulse.

To test our expectations we have performed quantum
streaking simulations for the 1D Coulomb potential VC(z),
Eq. (3), and the combination of the 1D Coulomb and Gaussian
potentials VCG(z), Eq. (16), using an eight-cycle streaking
pulse. We then extracted the time delay �ts by fitting the
streaked momentum over different intervals of the streaking
pulse using Eq. (6). The results are listed in Table I, where
negative times in the interval [t1,t2) correspond to the rising
part of the pulse, while positive times correspond to the trailing
part of the pulse.

As expected, the extracted time delays depend on the
interval used for the fitting procedure. In the case of the
1D Coulomb potential the variation of the time delays over
the streaking pulse are rather small. This indicates that the
major part of the time delay is accumulated shortly after
the transition of the electron into the continuum near the
nucleus, where the potential is strongest. On the other hand,
for the combined Coulomb-Gaussian potential we see a strong
change in the time delay for application of the XUV pulse
at the beginning of the streaking pulse compared to the
other fitting intervals. This can be understood within our
interpretation of the time delay. If the electron is ionized
early, it reaches the Gaussian potential during its propagation
at high streaking-field strengths. According to Eq. (18), this
part of the potential therefore contributes significantly to the
accumulated time delay. On the other hand, if the electron is
ionized later, it reaches the Gaussian potential either when the
streaking pulse is weak or after the end of the streaking pulse

TABLE I. Streaking time delays for different time intervals [t1,t2)
of the streaking trace. An eight-cycle streaking pulse and two 1D
potentials [VC(z) and VCG(z) (z0 = 650)] have been used for the
simulation. All values are given in atomic units.

[t1,t2) Coulomb Coulomb-Gaussian

[−400, −200) −0.9867 −1.3855
[−200,0) −0.9985 −1.0765
[0,200) −1.0085 −1.0130
[200,400] −1.0250 −1.0250

(i.e., for the interval [200,400]). In these cases the effect of the
Gaussian potential on �ts is small or absent, in agreement with
Eq. (18). The results therefore confirm the finite-range property
of the observed time delays. Furthermore, they actually open
the possibility of using the streaking technique to image the
presence and even the position of an additional potential (here,
the Gaussian potential) within a long streaking pulse.

B. Role of the polarization direction

Previously, we have considered 1D examples which have
already revealed important aspects of the physics behind the
streaking measurement technique. We now investigate the role
of the polarization direction in view of the finite-range property
of the time delay and the detection of a static potential at a
distance from the location of the photoemission. To this end
we consider the 2D potentials

V1(x,y) =
⎧⎨
⎩− Z√

r2+a
− V0,1e

− (r−r0)2

σ2 for |x| ≤ 100,

− Z√
r2+a

for |x| > 100,

(19)

V2(x,y) = − Z√
r2 + a

− V0,2e
− (r−r0)2

σ2
y2

r2
, (20)

where r =
√

x2 + y2. Both potentials are shown in Fig. 4
for Z = 2.0, a = 0.164, V0,1 = 0.5, V0,2 = 0.25, r0 = 140,
and σ = 5.0. In our calculations the electron was initially
bounded in the ground state of the Coulomb potential with
an eigenenergy of −2.0. We then used an XUV pulse with
IXUV = 1 × 1014 W/cm2, ωXUV = 68 eV, NXUV = 10, and
φXUV = −π/2 and a three-cycle, 400-nm streaking pulse
with Is = 1 × 1012 W/cm2 and φs = −π/2 to streak the
momentum of the photoelectron. The TDSE was solved using
a space-time grid with �x = �y = 0.3, Nx = Ny = 5000,
and �t = 0.05 in 2D Cartesian coordinates. The polarization
directions of ionizing and streaking pulses were kept parallel,
but the polarization direction with respect to the orientation of
the potentials was varied.

To obtain the streaking trace as a single curve as in Fig. 1(a),
we first performed a 2D Fourier transform of the ionized
part of the wave function at the end of each simulation for
a given time delay between the XUV and the streaking pulses.
This 2D momentum distribution was then integrated over a
small opening angle (±5◦) with respect to the polarization
direction of the coaligned ionizing and streaking pulses, since
the streaking effect is expected to be strongest along the
polarization direction of the streaking pulse. Next, we obtained
the expectation value of the resulting momentum distribution
for a given time delay τ . Finally, by repeating the calculations
for application of the XUV ionizing pulse over the central
cycle of the streaking pulse we obtained the desired streaking
trace as a function of the time delay between the two pulses
and determined the temporal offsets by comparison with the
vector potential as before in the 1D cases. We have propagated
all wave packets for different XUV-streaking delays to the
same distance in space, therefore the conclusions based on
the qualitative behavior of the results presented below do not

013404-6



ATTOSECOND-STREAKING TIME DELAYS: FINITE- . . . PHYSICAL REVIEW A 89, 013404 (2014)

FIG. 4. (Color online) Two-dimensional model potentials, as de-
fined (a) in Eq. (19) and (b) in Eq. (20), plotted on a logarithmic scale
as log[−V (x,y)].

depend on the particular choice of wave function used for
calculating the momentum distributions.

In Fig. 5(a) we present the streaking time delays as a
function of the number of cycles in the streaking pulse
for the 2D potential defined in Eq. (19). We compare the
results obtained for the full potential in which the pulses
are polarized in either the x [(green) line with asterisks] or
the y direction [(red) line with squares] with those in which
we neglected the additional Gaussian potential at a distance
from the Coulomb potential [(blue) line with circles]. Due to
the spherical symmetry of the pure 2D Coulomb potential,
in the latter case the results are independent of the choice
of the polarization direction and we therefore show the results
obtained for polarization along the x direction only. In contrast,
with the additional Gaussian potential the results strongly
depend on the polarization direction. While the streaking
time delays with and without additional potential agree with
each other for polarization of the streaking field along the x

direction, they deviate from N = 6 on for polarization in the
y direction. The latter behavior is similar to the 1D example
studied before [21]. The difference in the results is due to the
fact that the time delay is determined by the photoelectron
dynamics in the coupled field of the atomic potential and
the streaking field along the polarization direction. For short
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FIG. 5. (Color online) Time delay as a function of streaking-
pulse cycle number for the 2D potentials defined (a) in Eq. (19) and
(b, c) in Eq. (20) and polarizations of the streaking (and coaligned
XUV ionizing) field in the x direction [(green) line with asterisks],
at 45◦ [(cyan) line with crosses], and in the y direction [(red) line
with squares]. The results are compared with those for the pure 2D
Coulomb potential without the additional potential [(blue) line with
circles] and a streaking field polarized in the x direction. In (c), the
original streaking time delays for the 2D potential, Eq. (20) as shown
in (b), have been shifted to match the result for the shortest streaking
pulse for the pure 2D Coulomb potential.

streaking pulses the photoelectron does not reach the location
of the additional Gaussian potential and the effect of the latter
is therefore negligible, while for longer pulses the coupling
effect between the streaking field and the additional Gaussian
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potential becomes present. The additional model potential is
present along the y polarization but not in the x direction, in
agreement with our observations for the different polarization
directions of the field.

Next, in Fig. 5(b) we show the results obtained for the
second 2D potential, Eq. (20). Time delays for the full
potential and different polarizations of the coaligned ionizing
and streaking pulses [polarization in the x direction, (green)
line with asterisks; at 45◦, (cyan) line with crosses; and in the y

direction, (red) line with squares] are compared with those ob-
tained without an additional potential [(blue) line with circles].
We note that in this case the time delays do not coincide with
each other, even for short streaking pulses, for which the pho-
toelectron wave packet does not reach the additional potential
when the streaking pulse ceases. Further analysis revealed that
this discrepancy can be explained as being due to the scattering
of the photoelectron at the additional potential, which leads
to different final momentum distributions compared to that of

the pure 2D Coulomb-potential case. In order to remove this
scattering effect, we shifted all time delay curves such that the
results match for the shortest streaking pulse. The resulting
modified time delays, shown in Fig. 5(c), then again reveal the
finite-range property since the curves deviate for N > 5. We,
furthermore, observe that the degree of deviation increases as
the additional potential along the polarization direction gets
stronger.

C. Shape of the streaking pulse

So far, we have considered streaking pulses with a sin2 enve-
lope. According to the classical analysis, Eq. (18), however, the
time delay depends on the instantaneous field strength during
the propagation of the electron in the continuum. It is therefore
interesting to study whether and how the shape of the streaking
field envelope influences the observed time delays. In order to
study this aspect we have used the following pulse envelope:

Eenv(βp,Tp) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E0 sin2(πt/Ts) for 0 � t � Ts/2,

(1 − βp)E0 sin2(πt/Ts) + βpE0 cos2[π (t − Ts/2)/(Ts + 2Tp)] for Ts/2 � t � Ts,

βpE0 cos2[π (t − Ts/2)/(Ts + 2Tp)] for Ts � t � Ts + Tp,

0 otherwise.

(21)

As shown in Fig. 6 the corresponding field has a pedestal in the
trailing part of the pulse, which depends on the parameters βp

and Tp. For βp → 0 and/or Tp → 0, Eenv equals the previously
considered sin2 form of the envelope with duration Ts .

We performed quantum streaking simulations for different
values of the parameters βp and Tp for the 1D Coulomb
potential VC(z) with effective charges Z = 1.0 and Z = 3.0,
respectively, and a streaking pulse with Ts = 331 at a wave-
length of 800 nm and a peak intensity of Is = 1 × 1012 W/cm2.
To ionize the electron from the ground state of each potential,
we have used an XUV pulse with IXUV = 1 × 1015 W/cm2,
ωXUV = 60 eV (Z = 1.0) or 100 eV (Z = 3.0), NXUV = 10
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FIG. 6. (Color online) Streaking field with a pedestal [solid (red)
line]: E0 = 5.34 × 10−3 (i.e., Is = 1 × 1012 W/cm2), Ts = 331,
βp = 0.2, and Tp = 750. For comparison, a basic three-cycle, 800-nm
streaking pulse [dashed (blue) line] is also shown.

(Z = 1.0) or 15 (Z = 3.0), and φXUV = −π/2. In each of
these simulations we extracted the time delay by applying the
XUV over the interval [0,Ts] of the corresponding pulse. The
results are shown in Fig. 7 [solid (blue) line with circles in (a)
and (c) and solid (blue) line with squares in (b) and (d)].

We observe that the time delays obtained for the pedestals
deviate from those for the sin2 pulse shape (Tp = 0 or βp = 0)
for both potentials. This is in agreement with our interpretation
of a finite-range time delay and the dependence on the
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FIG. 7. (Color online) Streaking time delay as a function of
(a, b) the pedestal length Tp (βp = 0.2) and (c, d) the pedestal strength
βp (Tp = 750). (a, c) Results for Z = 1.0; (b, d) results for Z = 3.0.
The influence of an additional static field on the streaking time delay
is also present [dashed (green) lines with asterisks and crosses] in (a)
and (b).
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circles] and Z = 3.0 [solid (green) line with squares].

instantaneous streaking-field strength during the propagation
of the electron [Eq. (18)], since the deviation increases as βp

or Tp increases. Quantitatively, our results, however, further
show that the deviations due to the presence of the pedestal
are rather small [e.g., about 1% for Z = 3.0 and βp = 1.0; see
Fig. 7(d)]. This is due to the fact that the effect of the pedestal
comes into play when the electron is at rather large distances
from the nucleus, at which the Coulomb potential is weak.
Thus, we expect that for an atomic-like system pedestals and
other deviations from a sin2 or Gaussian streaking pulse shape
should not have a large effect on the observed time delays.

D. Additional static electric field

Finally, we also investigated the influence of additional
static electric fields on the attosecond-streaking time delay. In
an experiment the presence of such additional fields may be
used in order to direct the photoelectrons towards a detector.
We therefore included an additional static field term Estatic

in Eq. (1) and performed quantum streaking simulations for
streaking pulses with and without pedestal. As before, we
considered two 1D Coulomb potentials VC(z) with effective
charges of Z = 1.0 and Z = 3.0, respectively. From the results
presented in Fig. 8 we conclude that the presence of additional
static electric fields up to field strengths of Estatic = 10−5 do
not have a significant effect on the extracted time delays. The
same conclusion can also be drawn for streaking pulses with a
pedestal, which can be seen by comparing the dashed (green)

lines (for Estatic = 10−5, asterisks for Z = 1.0 and crosses for
Z = 3.0) with the solid (blue) lines (for Estatic = 0, circles for
Z = 1.0 and squares for Z = 3.0) in Figs. 7(a) and 7(b).

IV. SUMMARY

In summary, we have theoretically analyzed the attosecond-
streaking technique. To this end, we have compared the results
for the time delay from quantum streaking simulations with
those from two classical approximations for the dynamics of
the photoelectron in the continuum, namely, a perturbative
approach and the full numerical solution of the corresponding
Newton’s equation. We have found that the quantum and full
classical results are in good agreement with each other, which
shows that the time delay can be understood as being due to
the dynamics of the photoelectron in the combined potential
of the streaking field and the parent ion. On the other hand, the
results from the perturbative classical approach deviate from
both the quantum and the full classical results. Based on the
interpretation that the time delay arises from the propagation
of the electron in the continuum over a finite range in time
until the streaking pulse ceases, we have further analyzed the
role of the duration, polarization, and shape of the streaking
pulse. Our results have shown that over a long streaking pulse
the observed time delay can vary and that in an anisotropic
potential the time delay strongly depends on the direction of
the polarization and photoelectron emission. Finally, we have
found that—in the case of an atomic-like potential—the shape
of the streaking pulse, e.g., pedestals in the trailing part of
the pulse as well as additional static electric fields, has only a
small influence on the observed time delays.
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033420 (2013).

013404-9

http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1103/PhysRevLett.88.173903
http://dx.doi.org/10.1103/PhysRevLett.88.173903
http://dx.doi.org/10.1103/PhysRevLett.88.173903
http://dx.doi.org/10.1103/PhysRevLett.88.173903
http://dx.doi.org/10.1126/science.1189401
http://dx.doi.org/10.1126/science.1189401
http://dx.doi.org/10.1126/science.1189401
http://dx.doi.org/10.1126/science.1189401
http://dx.doi.org/10.1103/PhysRevLett.105.233002
http://dx.doi.org/10.1103/PhysRevLett.105.233002
http://dx.doi.org/10.1103/PhysRevLett.105.233002
http://dx.doi.org/10.1103/PhysRevLett.105.233002
http://dx.doi.org/10.1103/PhysRevA.83.023421
http://dx.doi.org/10.1103/PhysRevA.83.023421
http://dx.doi.org/10.1103/PhysRevA.83.023421
http://dx.doi.org/10.1103/PhysRevA.83.023421
http://dx.doi.org/10.1103/PhysRevA.86.023419
http://dx.doi.org/10.1103/PhysRevA.86.023419
http://dx.doi.org/10.1103/PhysRevA.86.023419
http://dx.doi.org/10.1103/PhysRevA.86.023419
http://dx.doi.org/10.1103/PhysRevA.84.033401
http://dx.doi.org/10.1103/PhysRevA.84.033401
http://dx.doi.org/10.1103/PhysRevA.84.033401
http://dx.doi.org/10.1103/PhysRevA.84.033401
http://dx.doi.org/10.1088/0953-4075/44/8/081001
http://dx.doi.org/10.1088/0953-4075/44/8/081001
http://dx.doi.org/10.1088/0953-4075/44/8/081001
http://dx.doi.org/10.1088/0953-4075/44/8/081001
http://dx.doi.org/10.1103/PhysRevA.87.033420
http://dx.doi.org/10.1103/PhysRevA.87.033420
http://dx.doi.org/10.1103/PhysRevA.87.033420
http://dx.doi.org/10.1103/PhysRevA.87.033420
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023413 (2013).
[22] E. P. Wigner, Phys. Rev. 98, 145 (1955).
[23] F. T. Smith, Phys. Rev. 118, 349 (1960).
[24] O. Smirnova, A. S. Mouritzen, S. Patchkovskii, and M. Ivanov,

J. Phys. B 40, F197 (2007).
[25] O. Smirnova, M. Spanner, and M. Ivanov, J. Phys. B 39, S307

(2006).

013404-10

http://dx.doi.org/10.1080/09500340.2013.778342
http://dx.doi.org/10.1080/09500340.2013.778342
http://dx.doi.org/10.1080/09500340.2013.778342
http://dx.doi.org/10.1080/09500340.2013.778342
http://dx.doi.org/10.1103/PhysRevLett.107.213605
http://dx.doi.org/10.1103/PhysRevLett.107.213605
http://dx.doi.org/10.1103/PhysRevLett.107.213605
http://dx.doi.org/10.1103/PhysRevLett.107.213605
http://dx.doi.org/10.1088/0953-4075/45/18/183001
http://dx.doi.org/10.1088/0953-4075/45/18/183001
http://dx.doi.org/10.1088/0953-4075/45/18/183001
http://dx.doi.org/10.1088/0953-4075/45/18/183001
http://dx.doi.org/10.1016/j.chemphys.2012.01.017
http://dx.doi.org/10.1016/j.chemphys.2012.01.017
http://dx.doi.org/10.1016/j.chemphys.2012.01.017
http://dx.doi.org/10.1016/j.chemphys.2012.01.017
http://dx.doi.org/10.1103/PhysRevA.85.033401
http://dx.doi.org/10.1103/PhysRevA.85.033401
http://dx.doi.org/10.1103/PhysRevA.85.033401
http://dx.doi.org/10.1103/PhysRevA.85.033401
http://dx.doi.org/10.1103/PhysRevLett.108.163001
http://dx.doi.org/10.1103/PhysRevLett.108.163001
http://dx.doi.org/10.1103/PhysRevLett.108.163001
http://dx.doi.org/10.1103/PhysRevLett.108.163001
http://dx.doi.org/10.1103/PhysRevA.84.061404
http://dx.doi.org/10.1103/PhysRevA.84.061404
http://dx.doi.org/10.1103/PhysRevA.84.061404
http://dx.doi.org/10.1103/PhysRevA.84.061404
http://dx.doi.org/10.1039/c3fd00004d
http://dx.doi.org/10.1039/c3fd00004d
http://dx.doi.org/10.1039/c3fd00004d
http://dx.doi.org/10.1039/c3fd00004d
http://dx.doi.org/10.1103/PhysRevA.82.043405
http://dx.doi.org/10.1103/PhysRevA.82.043405
http://dx.doi.org/10.1103/PhysRevA.82.043405
http://dx.doi.org/10.1103/PhysRevA.82.043405
http://dx.doi.org/10.1103/PhysRevLett.104.043602
http://dx.doi.org/10.1103/PhysRevLett.104.043602
http://dx.doi.org/10.1103/PhysRevLett.104.043602
http://dx.doi.org/10.1103/PhysRevLett.104.043602
http://dx.doi.org/10.1103/PhysRevA.86.045401
http://dx.doi.org/10.1103/PhysRevA.86.045401
http://dx.doi.org/10.1103/PhysRevA.86.045401
http://dx.doi.org/10.1103/PhysRevA.86.045401
http://dx.doi.org/10.1103/PhysRevA.88.023413
http://dx.doi.org/10.1103/PhysRevA.88.023413
http://dx.doi.org/10.1103/PhysRevA.88.023413
http://dx.doi.org/10.1103/PhysRevA.88.023413
http://dx.doi.org/10.1103/PhysRev.98.145
http://dx.doi.org/10.1103/PhysRev.98.145
http://dx.doi.org/10.1103/PhysRev.98.145
http://dx.doi.org/10.1103/PhysRev.98.145
http://dx.doi.org/10.1103/PhysRev.118.349
http://dx.doi.org/10.1103/PhysRev.118.349
http://dx.doi.org/10.1103/PhysRev.118.349
http://dx.doi.org/10.1103/PhysRev.118.349
http://dx.doi.org/10.1088/0953-4075/40/13/F01
http://dx.doi.org/10.1088/0953-4075/40/13/F01
http://dx.doi.org/10.1088/0953-4075/40/13/F01
http://dx.doi.org/10.1088/0953-4075/40/13/F01
http://dx.doi.org/10.1088/0953-4075/39/13/S05
http://dx.doi.org/10.1088/0953-4075/39/13/S05
http://dx.doi.org/10.1088/0953-4075/39/13/S05
http://dx.doi.org/10.1088/0953-4075/39/13/S05



