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Numerical Simulations of Attosecond Streaking Time Delays in
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We present results of numerical simulations and theoretical classical analysis of time delays
with respect to the instant of ionization in a numerical streaking experiment. These results
confirm our previous interpretation of the streaking time delay as a finite-range and field-
weighted time delay. We show that in the streaking experiments the time delay strongly
depends on the parameters of the streaking field. Consequently, the streaking time delay is
accumulated over a finite range in space, which the emitted electron probes after its transition
into the continuum until the streaking pulse ceases. Moreover, we confirm by results of our
numerical simulations that the streaking time delay can be understood as a sum (or integral)
over field-free time delays weighted by the relative instantaneous field strength during the
propagation of the photoelectron.
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I. INTRODUCTION

Recently, applications of attosecond (1 as = 10−18 s) pulse technology led to the
analysis of the question whether or not an electron is emitted instantaneously from an
atom, molecule or solid upon the absorption of an extreme ultraviolet (XUV) laser photon
[1–3]. One approach to observe this ultrafast dynamics of the photoelectron is the so-called
attosecond streak camera technique [4]. In this approach due to the interaction with a
second weak streaking pulse at a near-infrared wavelength, which is superimposed to the
ionizing XUV laser pulse, the momentum of the photoelectron is modulated. Neglecting
the long-range Coulomb interaction between the photoelectron and the residual target ion
the momentum of the photoelectron is given by

k
(0)
f (ti) = k0 −As(ti), (1)

where k0 =
√

2(ω − Ip) is the asymptotic momentum without application of the streaking
pulse and As(ti) is the vector potential of the streaking field at the instant of transition of
the photoelectron into the continuum ti, which we denote here also as the time of ionization.

In the reported experimental data [1, 2], an oscillation of the photoelectron momen-
tum as a function of the delay between the XUV and the near-infrared laser pulses has
been observed, as expected from Eq. (1). However, the observations also revealed temporal
offsets ∆ts in the oscillations as compared to the vector potential A(ti), i.e.,

kf (ti) ≃ k0 − αAs(ti +∆ts), (2)
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where α is a fitting parameter. These temporal offsets were first interpreted as delays in
the emission of the photoelectron. However, theoretical works, e.g., [5–19], showed that
on the attosecond time scale of these observations a detailed analysis of the effect of the
Coulomb potential on the photoelectron as well as the coupling between the Coulomb
potential and the streaking field needs to be taken into account. It was expected that the
observed temporal offsets are, at least partially, related to the well-known Wigner-Smith
(WS) time delay [20, 21]. The latter denotes the time delay of an electron propagating in a
potential towards infinity as compared to a freely propagating electron. A concern with this
interpretation is related to the fact that the WS time delay does diverge for a long-range
interaction, such as the Coulomb potential [21–23]. Theoretical work therefore focused on
the role of short- vs. long-range part of the Coulomb potential itself as well as during the
coupling between the Coulomb potential and the streaking field (e.g., [9–13]).

Recently, we reported [24] results of numerical simulations and a classical analysis,
which revealed the following aspects in the interpretation of the observed temporal offsets:
First, we found that the temporal offsets are related to the propagation of the photoelectron
over a finite range in time and space instead of its propagation towards infinity, as assumed
in the WS time delay. Thus, according to our interpretation any previously expressed
concerns regarding the divergence of the temporal offsets are unnecessary. Furthermore,
we proposed that — based on an approximate formula derived in a classical analysis — the
temporal offsets can be interpreted as a sum of piecewise field-free time delays weighted by
the instantaneous streaking field strength relative to the field strength at the transition of
the photoelectron into the continuum.

The intention of this invited paper is to review the above aspects of the temporal
offsets and support our interpretation by further results of numerical calculations. To this
end, we first outline the model used in the present simulations of a streaking experiment as
well as the numerical techniques applied to solve the time-dependent Schrödinger equation
(TDSE). Using a short-range Yukawa potential centered at a distance of the location of
photoemission, we demonstrate in different scenarios that it is the time interval between
the photoemission and the end of the streaking pulse that is relevant for the observed
temporal offset. Finally, we discuss the interpretation of the temporal offsets as field-
weighted time delays, accumulated piecewise during the propagation of the photoelectron
until the streaking pulse ceases. We end with a brief summary of our results.

II. NUMERICAL SIMULATIONS

As mentioned in the introduction, our results in a previous report [24] indicate that
the temporal offsets in numerical simulations of streaking experiments are related to the
propagation of the photoelectron over a finite range in time and space after its transition
into the continuum upon interaction with the XUV laser pulse. To substantiate this in-
terpretation, we consider a model system in which we add a short-range potential at a
distance to the center of a Coulomb potential. Since the photoelectron is initially located
in the ground state of the Coulomb potential, we can test by variation of the location of
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the short-range potential and/or by variation of the parameters of the streaking pulse how
this additional potential does influence the temporal offset ∆ts in the numerically obtained
streaking patterns. In order to vary the location of the additional short-range potential over
a large region in space, we needed to use a large space-time grid in each of our numerical
simulations. In view of the numerical effort to obtain precise results on the attosecond time
scale as well as the number of simulations performed we restricted our analysis to a 1D
model, which is well justified by noting that for a linearly polarized laser pulse the final
momentum of the photoelectron is streaked along the polarization direction [c.f., Eq. (1)].

Previously, we considered Gaussian potentials of various strength as additional short-
range potentials [24]. In order to show that our conclusions are independent of the form of
the model potential, we used in the present set of numerical simulations the following 1D
potential (Hartree atomic units, e = m = ~ = 1 are used):

VCY(x) = − Z1√
x2 + a1

− Z2e
−
√

(|x|−x0)2+a3/b√
(|x| − x0)2 + a2

. (3)

The potential VCY(x) consists of a Coulomb potential with an effective charge Z1 = 4.0 and
a soft-core parameter a1 = 3.0, and an additional Yukawa potential with Z2 = 3.0, a2 = 2.0,
a3 = 1×10−5, and b = 5.0 centered at a distance x0 from the center of the Coulomb potential
at x = 0. The strength of the Yukawa potential is chosen to be comparable to that of the
Coulomb potential to avoid any concerns regarding the influence of this additional potential
on the observed temporal offsets. As we will show below [see e.g., Fig. 1(b)] the effect of
the present Yukawa potential is indeed substantial enough to draw conclusions. We have
chosen the electron to be initially located in the ground state of the Coulomb potential,
which has an energy of −1.9448. We have tested that this initial state is not affected by
the additional Yukawa potential as long as the center of the Yukawa potential is located at
distances of x0 > 50.

In our streaking simulations we have numerically solved the corresponding TDSE

i
∂Ψ(x, t)

∂t
=

[
p2

2
+ VCY(x) + (EXUV(t) + Es(t))x

]
Ψ(x, t), (4)

with the momentum operator p. The electric fields of both the XUV, EXUV(t), and the
streaking laser pulse, Es(t), are represented as

E(t) = E0 sin
2(πt/T ) cos(ωt+ ϕ), (5)

where E0 is the peak amplitude, T is the pulse duration, ω is the central frequency, and
ϕ is the carrier-envelope phase (CEP) of the respective field. The TDSE was solved on a
sufficiently large grid in space and time using the Crank-Nicolson method. We confirmed
that in all simulations the outgoing wave packet stays on the grid until both pulses ceased.

The momentum distributions were obtained by spatially separating the ionized wave
packet from the total wave function, which is possible due to the long propagation times
used in our simulations, and then performing a Fourier transform. By varying the delay ti
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FIG. 1: (Color online) Final electron momentum as a function of the delay between XUV and
streaking pulses (only the central cycle of the streaking pulse is shown). Streaking traces from
numerical simulations with the Coulomb potential (blue solid line) and the combined Coulomb and
Yukawa potential with x0 = 700 (green dashed line) are compared. As a reference, the trace expected
from the original streaking formula, Eq. (1), (red dash-dotted line) is also shown. Panel (b) is a
magnification of the streaking traces to show the attosecond delay or temporal offset between them.
Laser parameters are: IXUV = 1 × 1015 W/cm2, ωXUV = 140 eV, TXUV = 600 as, ϕXUV = −π/2,
Is = 1× 1012 W/cm2, λs = 800 nm, Ns = 8 cycle, and ϕs = −π/2.

between the XUV and the streaking pulses we obtained the streaking trace as the expecta-
tion value of the final momentum of the photoelectron kf as a function of ti (e.g., see Fig.
1). As expected, the distributions have a temporal offset or delay ∆ts with respect to the
vector potential (red dotted line) at ti. The comparison of the streaking traces obtained in
simulations with (green dashed line) and without (blue solid line) the additional Yukawa
potential shows that the Yukawa potential has a substantial effect on the temporal offset.
We then extracted ∆ts by fitting the momentum trace to the expression in Eq. (2) using
the least-square method for the fitting parameters α and ∆ts.

III. INTERPRETATION OF STREAKING TIME DELAYS

In order to interpret the results of our numerical simulations, presented below, we
also performed a classical analysis of the streaking process. To this end, we model the
propagation of an electron in the continuum by Newton’s equation [25]:

dk

dt
= −Es(t)−

dV

dx
. (6)
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By multiplying dx to both sides and then integrating, the solution for the asymptotic
momentum of the electron at x → ∞ is given by [24]

kf (ti) =

√
k20 − 2

∫ T

ti

Es(t)k(t)dt, (7)

with k0 =
√

2(ω − Ip) and ti as the time delay of photoelectron emission. We note that
in Eq. (7) the integral over time is effectively limited by the end of the streaking pulse
since Es(t) appears as a factor in the integrand. We then equal this result to the streaking
formula, Eq. (2),

kf (ti) ≃ k0 − αAs(ti +∆ts)

≃ k0 − αAs(ti) + αEs(ti)∆ts
(8)

to get [for Es(ti) ̸= 0]

∆ts ≃
αAs(ti) +

√
k20 − 2

∫ T
ti
Es(t)k(t)dt− k0

αEs(ti)
. (9)

We note that in the above approximation the time delay depends on the choice of the initial
position xi and the parameter α. We have chosen xi to be the expectation value of the
electron position in the initial state, i.e., xi = 0 for VCY(x). Furthermore, we determined
α such that ∆ts remains approximately constant while varying ti typically over the central
cycle of the streaking pulse (see Fig. 2 in Ref. [24]).

III-1. Finite-rage time delays

As mentioned above, the integral in Eq. (7) is limited by the instants of transition
of the photoelectron into the continuum, ti, and the end of the streaking pulse, T . Thus,
according to our classical analysis the observed time delay is accumulated during the prop-
agation of the photoelectron over this finite time interval. For this reason, the range of
the potential that has to be taken into account is well determined and limited, since the
photoelectron propagates over a finite distance in space from ti to T . This is in contrast to
the WS time delay, which accounts for the full range of the potential, i.e., for a long-range
Coulomb potential in 1D up to x → ∞. Thus, due to the finite limits in our classical
analysis the temporal offset ∆ts does not diverge (for a streaking pulse with finite pulse
duration), in agreement with the observations in the experiment and in contrast to the
assumption that a (diverging) WS time delay is part of the observed temporal offset.

To test this conclusion from our classical analysis we performed a series of numerical
simulations using the model potential, Eq. (3), by varying the position of the Yukawa
potential with respect to the center of the Coulomb potential. In the first set of calculations
we have chosen a 6-cycle streaking pulse at 800 nm with a peak intensity of Is = 1× 1012

W/cm2, and a CEP of ϕs = −π/2. To photoionize the electron, we used an XUV pulse with
IXUV = 1 × 1015 W/cm2, ωXUV = 100 eV, τXUV = 600 as, and ϕXUV = −π/2. Quantum
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FIG. 2: (Color online) Streaking time delay as a function of the position of the Yukawa potential.
The TDSE results (blue open circles) are compared with the predictions based on the classical Eqs.
(9) (green solid line) and (15) (red dashed line). Laser parameters are given in the text.

results in Fig. 2 (blue open circles) confirm our expectation that only a finite range of
the combined Coulomb-Yukawa potential takes effect in a streaking experiment, since the
streaking time delay remains constant if the Yukawa potential is located at far distances,
here x0 & 650. We have checked that the constant time delay for x0 & 650 is equal to
the streaking time delay obtained without the additional Yukawa potential. These results
clearly show that the obtained time delays do not account for the presence of the Yukawa
potential, if it is located at far distances from the location of photoemission of the electron.

Furthermore, our classical predictions from Eq. (9) for ∆ts (green solid lines) agree
very well with the TDSE results (blue open circles). From Eq. (9), we see that ∆ts de-
pends on the coupling between the streaking field and the potential and, thus, on both the
parameters of the streaking field Es(t) and the shape of the potential. Thus, we expect
that the streaking time delay can be indeed interpreted via the classical dynamics of the
photoelectron in the combined potential of the Coulomb and streaking fields over a finite
range in time and space until the streaking pulse ceases at t = T .

To further confirm these expectations we performed further sets of numerical simu-
lations. In these simulations we varied the XUV photon energy (Fig. 3) or the shape and
length of the streaking pulse (Fig. 4), respectively. We varied these two laser parameters in
order to change either the momentum or the propagation time of the photoelectron until
the streaking pulse ceases. With both changes we therefore control the propagation dis-
tance of the photoelectron while the streaking pulse is present. In the first of the two sets
of simulations we used a 8-cycle, 800 nm streaking pulse with an intensity of Is = 1× 1012

W/cm2, and a CEP of ϕs = −π/2. In the second set we applied a 3-cycle, 800 nm streaking
pulse with the same peak intensity and CEP and an additional pedestal. The form of the
latter field envelope was given by
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FIG. 3: (Color online) (a) Difference in the streaking time delay (blue solid line with open circles)
obtained with and without Yukawa potential as a function of XUV central frequency. Assuming the
electron is ionized at the peak of the streaking field, we show the signs (red plus or minus symbols) of
the streaking field at the instant when the electron wave packet arrives at the Yukawa potential for
each of the data points. (b) Position of the electron wave packet at the end of the streaking field for
the first five XUV frequencies used in this set of simulations [see panel (a)]. The Yukawa potential
was located at the distance x0 = 700, which is marked by a red dashed line. The wave packet is
chosen to be liberated at the center of the streaking pulse and each wave packet is normalized to 1
for the sake of comparison. Laser parameters are given in the text.

Eenv(βp, Tp) =


E0 sin

2(πt/Ts) 0 ≤ t ≤ Ts/2,

(1− βp)E0 sin
2(πt/Ts) + βpE0 cos

2
[
π(t−Ts/2)
Ts+2Tp

]
Ts/2 ≤ t ≤ Ts,

βpE0 cos
2
[
π(t−Ts/2)
Ts+2Tp

]
Ts ≤ t ≤ Ts + Tp,

0 else,

(10)

in which βp = 0.2 and the length of the pedestal is determined by Tp. For the XUV
parameters, we have chosen IXUV = 1 × 1015 W/cm2, τXUV = 600 as, ϕXUV = −π/2 as in
all simulations, and ωXUV = 100 eV for the latter set.

In Fig. 3 (a), we present the difference between the streaking time delays obtained
with and without the Yukawa potential as a function of the XUV central frequency. To
relate the streaking time delay to the propagation distance of the photoelectron during the
presence of the streaking pulse, we show in panel (b) the normalized ionized wave packet
at the end of streaking pulse as a function of x for the five lowest XUV photon energies
considered in this set of simulations. As a reference, the position of the Yukawa potential
is marked by a red dashed line. We find, as expected, that the difference between the time
delays obtained with and without the additional short-range potential does equal zero,
when the ionized wave packet does not reach the location of the Yukawa potential until
the streaking pulse ceases, i.e., for ωXUV ≤ 80 eV in the present set of simulations. For
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FIG. 4: (Color online) Streaking time delay as a function of the pedestal length for photoionization
in two potentials: Coulomb (blue solid line with circles) and Coulomb+Yukawa with x0 = 700
(green solid line with squares). Laser parameters are given in the text.

larger XUV photon energies, the two time delays deviate due to the influence of the Yukawa
potential, which is then reached by the ionized wave packet.

The same conclusion can be drawn from the results in Fig. 4, in which we present
the streaking time delays with and without the Yukawa potential as a function of the
pedestal length [c.f., Eq. (10)]. In this set of simulations the wave packet reached the
location of the Yukawa potential at x0 = 700 for streaking pulses with a pedestal length
of Tp & 200. Clearly, the two streaking delays deviate for a longer pedestal, which again
confirms our interpretation of a finite-range time delay, in which the range is determined
by the propagation distance of the photoelectron until the end of the streaking pulse.

III-2. Field-weighted time delays

As mentioned at the outset, using further approximations our classical analysis pro-
vides another interesting interpretation in the form of field-free time delays. To this end,
we note that the momentum shift kf (ti)− k0 in Eq. (7) is usually small. We can therefore
expand the square root to first order and by setting α = 1 we obtain

∆ts ≃
1

Es(ti)

∫ T

ti

Es(t)

(
1− k(t)

k0

)
dt, (11)

or by rewriting the integral as a sum

∆ts ≃
1

Es(ti)

N∑
j=1

Es(tj)∆t(j), (12)

with

∆t(j) =

(
1− k(tj)

k0

)
δt, (13)
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FIG. 5: (Color online) (a) Time delays
∑
j

∆t(j) and
∑
j

∆t
(j)
field-free as a function of the XUV central

frequency. The time delays were calculated using the back-propagation method introduced in [22, 23]

for an electron propagating in the Coulomb+Yukawa potential (
∑
j

∆t
(j)
field-free, blue solid line with cir-

cles) and an electron propagating in the combined potential of the streaking and Coulomb+Yukawa
fields (

∑
j

∆t(j), green solid line with stars). (b) Relative difference between the two time delays

as a function of the XUV central frequency. All calculations were performed with the same laser
parameters as in Fig. 3, while the XUV pulse was applied at the peak of the streaking field in the
forward-propagation step.

where we assumed that the streaking field and the electron momentum are approximately
constant in the time interval [tj , tj + δt], i.e., Es(t) ≃ Es(tj) and k(t) ≃ k(tj) in the
corresponding time interval.

We note that Eq. (13) is the classical expression for the time delay accumulated
by the photoelectron in the combined potential of the Coulomb and the streaking fields as
compared to the propagation of a free photoelectron in the corresponding region [xj , xj+δx].
Thus, this expression is similar to that for the (classical) WS time delay with the important
difference that the expression in Eq. (13) relates to the propagation over a piecewise finite
distance while the WS time delay accounts for the propagation to infinity.

We further note that for a weak streaking field the time delay ∆t(j) can be well
approximated by neglecting the influence of the streaking field on k(t) as [22, 23]:

∆t(j) ≃ ∆t
(j)
field-free =

(
1− kfield-free(tj)

k0

)
δt. (14)

To show this we compare in Fig. 5 results for
∑
j
∆t(j) and

∑
j
∆t

(j)
field-free for typical laser

parameters used in the present streaking simulations. The corresponding time delays were
obtained using the back-propagation method introduced in Refs. [22, 23]. It can be clearly
seen from the results that the streaking field has negligible influence on this time delay.
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Using this additional approximation the streaking time delay finally yields:

∆ts ≃
N∑
j=1

Es(tj)

Es(ti)
∆t

(j)
field-free. (15)

As mentioned above, ∆t
(j)
field-free is the finite-range piecewise field-free time delay that the

electron accumulates during its propagation in the time interval [tj , tj + δt] and over a
related finite region [xj , xj + δx] of the potential V (x) as compared to the propagation of
a free particle over the same distance in space.

Predictions based on Eq. (15) (red dashed line) are in good agreement with those of
the full TDSE results as well as those based on Eq. (9), as exemplified in Fig. 2. Thus,
we can give the following interpretation: The observed streaking time delay is neither the
WS time delay nor the simple sum of finite-range piecewise field-free time delays. Instead,
it can be understood as a field-weighted time delay, in which the piecewise field-free time
delays are weighted by the streaking field strength present when the electron wave packet
propagates over the corresponding part of the potential.

We finally point out that the influence of the instantaneous field strength on the
observed time delay can be also seen from the results in Fig. 3(a). To this end, we note
that according to our interpretation the difference between the streaking time delays with
and without the additional Yukawa potential, as presented in Fig. 3(a), is approximately
given by the contribution to the streaking time delay caused by the presence of the Yukawa
potential as:

∆tYs (x0, ωXUV) ≃
Es(tY)

Es(ti)
∆tYWS, (16)

where ti and tY are the instant of ionization and the time instant at which the electron
reaches the Yukawa potential, respectively, and ∆tYWS is the WS time delay induced by
the Yukawa potential. Since Es(ti) > 0 in the present simulations and one can show that
∆tYWS < 0, we expect that the sign of the time delay difference should be opposite to the
sign of the instantaneous field strength as the photoelectron reaches the Yukawa potential.
The latter were retrieved from the actual numerical simulations and are marked in Fig. 3(a)
for each of the simulations. It is seen that our expectation of a difference in sign between
the time delay difference and the instantaneous field strength is indeed confirmed.

IV. CONCLUSIONS

In summary, we presented numerical simulations of streaking experiments using a
model system consisting of a 1D Coulomb potential and an additional short-range Yukawa
potential at a distance to the center of the Coulomb potential. By varying the location
of the Yukawa potential and the field parameters of the streaking pulse we were able to
confirm two aspects of the streaking time delay, which we proposed in a previous report [24].
First, the streaking time delay is accumulated by the photoelectron after the transition into
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the continuum over a finite range in time and space until the streaking pulse ends. Next,
the streaking time delay can be understood as a sum of piecewise field-free time delays
weighted by the instantaneous field strength during the propagation of the photoelectron
in the potential.
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