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Ab initio and perturbative calculations of the electric susceptibility of atomic hydrogen

Andrew Spott, Agnieszka Jaroń-Becker, and Andreas Becker
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We apply a numerical basis-state method to determine the electric susceptibility of atomic hydrogen via
calculations of the terms of the perturbative power series expansion up to eleventh order as well as from
ab initio calculations of the field-induced polarization. The results of the perturbative calculations indicate that
the applicability of the power series expansion is limited to intensities of a uniform electric field below 2 ×
1013 W/cm2 at a wavelength of 800 nm. While the predictions for the electric susceptibility from the perturbative
power series tend to strongly increase beyond this intensity regime, those from ab initio calculations have a
negative slope as a function of intensity. We therefore interpret that the latter feature is due to the nonperturbative
interaction between the atom and the external field and an explanation via higher-order nonlinear terms is not
applicable.

DOI: 10.1103/PhysRevA.90.013426 PACS number(s): 32.80.Wr, 42.65.An

I. INTRODUCTION

The nonlinear response of a medium to a strong external
field, e.g., that of an intense laser pulse, gives rise to various
nonlinear optical phenomena, such as high-harmonic and
attosecond pulse generation (for a review, see Ref. [1]) or
high-power femtosecond pulse filamentation (for reviews,
see Refs. [2–4]). The effect of the external electric field
on the medium is given by the induced polarization and/or
a current. For many materials the induced polarization
P is found to be proportional to the electric field E at
frequency ω:

P (ω) = ε0χ (ω) E (ω) , (1)

where χ is the electric susceptibility of the material. For
the response to a strong electric field, the susceptibility at
the driving frequency is often expanded in a power series
as

χ (ω) = χ (1) (ω) + χ (3) (ω; ω1,ω2,ω3) |E (ω)|2

+ χ (5) (ω; ω1,ω2,ω3,ω4,ω5) |E (ω)|4 + · · · ,

(2)

where
∑

j ωj = ω and ωj = ±ω with ω > 0.
Several nonlinear phenomena, such as Kerr self-focusing

or self-phase modulation [5], can be well understood by
restricting the series to the lowest-order (i.e., third-order)
nonlinear term χ (3) of the expansion. Kerr self-focusing itself
is a key ingredient in the standard model of femtosecond pulse
filamentation, since it describes the collapse of the pulse. A
self-guided light pulse, called a filament, is formed by the arrest
of the pulse collapse leading to a dynamical balance between
self-focusing and defocusing effects. Standard mechanisms
considered for the arrest of the collapse are plasma effects or
a negative fifth-order nonlinear susceptibility (for a detailed
discussion of the theory of optical pulse propagation and
filamentation, see, e.g., Ref. [6]).

However, results of a recent experiment [7] were interpreted
such that third- and even fifth-order nonlinear susceptibilities
were insufficient to account for the nonlinear response of
an atomic or molecular gas via the induced polarization at

standard light pulse intensities in filaments. In particular, at
high intensities a strong negative slope in the susceptibility
as a function of intensity was observed, in agreement with
earlier theoretical predictions [8,9]. It was proposed to intro-
duce higher-order Kerr effects (HOKEs) via the higher-order
nonlinear susceptibilities χ (N) to account for this feature [7].
The results started a controversial debate [10–33] about the
significance and interpretation of the higher-order terms in the
power series expansion [Eq. (2)], which currently is not fully
settled.

Although the assumption to describe the filamentation
process by using a perturbation theory has been questioned
recently [30,33], different approaches to determine the higher-
order coefficients χ (N) in the power series, Eq. (2), from
measurements [7], ab initio calculations [33], as well as the
Kramers–Kronig transform of multiphoton-ionization rates
[19,24] have been reported. We contribute to the present debate
by determining both ab initio results for the susceptibility as
well as the higher-order terms of the power series expansion
independently from each other but within the same theoretical
framework. We apply our approach to atomic hydrogen; our
results indicate that the perturbative power series breaks down
at intensities lower than those at which the strong negative
slope of the susceptibility occurs. Thus, based on our results
we conclude that a description of this feature via higher-order
Kerr terms is inapplicable and, for an accurate theoretical
description, if needed, one is required to account for the
nonperturbative interaction between the atom and the intense
laser pulse.

This paper is organized as follows: In the next section we
outline the numerical basis-state method that is used to perform
ab initio calculations of the field-induced polarization and
the related susceptibility as well as to determine the terms
of the perturbative power series expansion. In Sec. III we then
present results for the higher-order terms in the perturbative
series, followed by a discussion of the breakdown of the series
and the applicability regime of perturbative calculations of the
susceptibility of atomic hydrogen. Finally, we compare results
of ab initio and perturbative calculations for the interaction
with short laser pulses and conclude the paper with a brief
summary of the results.
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II. THEORY

We intend to provide both ab initio calculations of the
susceptibility χ (ω) as well as perturbative calculations of
the coefficients χ (N)(ω) of the power series within the same
theoretical approach. A common derivation of the higher-order
coefficients is based on the field-free energy basis states of
the atomic or molecular gas; in this study, atomic hydrogen.
For our ab initio calculations we therefore make use of an
expansion of the solution of the corresponding time-dependent
Schrödinger equation (TDSE) into the field-free energy basis
states as well. Such solutions are either based on analytical
basis sets, e.g., B splines [34,35], or a numerical basis set
[36], and we will make use of the latter approach. In the
remainder of this section we first briefly recapitulate the
basics of the ab initio numerical basis-state method and its
application to calculate the polarization and susceptibility of
atomic hydrogen due to a laser pulse. Then we proceed to
review the definition and calculation of the susceptibility terms
using this basis set.

A. Ab initio calculation of susceptibilities

In order to determine the susceptibility χ (ω) of an atom in
an external electric field using Eq. (1) we need to calculate
the polarization response to the field. To this end, we solve
the standard TDSE for atomic hydrogen interacting with the
electric field of an intense laser field given by

i
∂

∂t
|� (r,t)〉 = H (r,t) |ψ (r,t)〉, (3)

with the Hamiltonian in the length gauge using the dipole
approximation as

H (r,t) = H0 (r) + E (t) z, (4)

where we restrict ourselves to a linearly polarized field E(t),
and

H0 (r) = p̂2

2
− 1

r
(5)

is the field-free Hamiltonian and p̂ is the momentum operator.
For the numerical solution we expand �(r,t) in a discrete

set of field-free eigenstates of atomic hydrogen in a box along
the radial distance as

|� (r,t)〉 =
∑
nlm

cnlm (t) |ψnlm (r)〉 (6)

=
∑
nlm

cnlm (t) |Rnlm (r) Ylm (�)〉, (7)

where Rnl(r) and Ylm(�) are the radial wave functions
and spherical harmonics, respectively. The radial functions
unl(r) = rRnl(r) are generated as numerical solutions of the
corresponding eigenvalue equation by using the Numerov
method on a logarithmic one-dimensional finite-space grid
with the boundary condition unl(r = 0) = unl(R0) = 0 [36].
Due to the finite box size R0 both bound and continuum parts
of the spectrum are discrete and all states in the basis set can
be indexed by n. For a linearly polarized field the basis set can
be restricted due to the dipole selection rule (	m = 0). In the
present study we consider the ground state of atomic hydrogen

as the initial state and therefore only include states with m = 0
in our basis set. For convenience, we therefore drop the index
m below.

We then use the field-free eigenstates to represent the dipole
operator as

μ̂ = −
∑

n,l,n′,l′
|ψnl〉 〈ψnl | ẑ |ψn′l′ 〉 〈ψn′l′ | (8)

and propagate the time-dependent Schödinger equation(
p̂2

2
− 1

r
+ E (t) μ̂

)
|� (r,t)〉 = i

∂

∂t
|� (r,t)〉 (9)

in the electric field of a pulse, which is given by

E (t) = E0 sin2

(
πt

T0

)
sin(ωt), (10)

where E0 is the field strength, T0 is the time duration of
the pulse, ω is the central field frequency, using the Crank–
Nicolson method (for details of the numerical method, see
Ref. [36]).

Previously, we applied this method to the nonperturbative
interaction of atomic hydrogen with a short intense laser
pulse and obtained excitation and ionization probabilities as
well as momentum distributions of the photoelectron. The
convergence of the results with respect to the size of the
numerical basis set as well as the agreement of results with
those of two-dimensional grid calculations have been shown
[36]. In the present study we calculate the susceptibility χ (ω)
by taking the Fourier transform of the dipole moment:

ε0χ (ω)

ρ
= FT [μ (t)] (ω)

E0
, (11)

where

μ (t) = −〈� (t)| ẑ |� (t)〉 (12)

is the time-dependent dipole moment and ρ is the number
density of atoms. For the results of our ab initio calculations
shown below, we present the quantity ε0χ (ω)/ρ instead of
χ (ω), since the former is independent of the atomic density.

B. Perturbative calculation of higher-order
nonlinear susceptibilities

In order to obtain the terms for the coefficients in the power
series, we write the N th-order perturbative correction of the
ground-state wave function interacting with an external field
as (cf., Ref. [5])

|ψ (N)(ω1, . . . ,ωN )〉

=
∑

jN �=j0

· · ·
∑
j1 �=j0

[
N∏

i=1

〈ψji
|μ̂E(ωi)e−iωi t |ψji−1〉

ωji
− ωj0 − ∑i

k=1 ωk

]
|ψjN

〉,

(13)

where μ̂ is given by Eq. (8), ωj0 is the ground-state energy,
ωk and ωi are the participating frequencies of the electric
field, and ji denotes state in the basis set. In this work we
use the states of the numerical basis set for the calculations.
We neglect the finite lifetimes of the excited states, assuming
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that all transitions considered in this study are far from any
resonance.

The N th-order perturbative correction to the single-atom
polarization can then be written as

〈P(N)(ω)〉 = P
N∑

j ′=0

〈ψ (j ′)|μ̂|ψ (N−j ′)〉, (14)

where P refers to the average of all permutations of the
frequencies, where ωj = ±ω and

∑
j ωj = ω. By using the

symmetry of the electric field with respect to positive and
negative frequencies about the central frequency ω, Eq. (14)
can be written in the form [5]

〈P(N)(ω)〉 = ε0χ
(N)(ω)|E(ω)|N−1E(ω), (15)

where χ (N) is the N th-order coefficient in the power series
expansion of the susceptibility (2).

III. RESULTS AND DISCUSSION

In this section we first present the results of our calculations
for the coefficients in the power series expansion by showing
the convergence of the results with respect to the box size of
the numerical grid R0 and the basis size. We then proceed by
analyzing criteria for the breakdown of the series expansion
at high field strengths and identify a regime for a critical field
strength. Finally, we compare the results of the perturbative
calculations with those of the ab initio calculations in order
to analyze whether or not the series expansion describes the
negative slope of the nonlinear susceptibility at high field
strengths.

A. Perturbative higher-order nonlinear susceptibilities

In Fig. 1 we present the results of our perturbative
calculations for the susceptibility coefficients of the power
series, Eq. (2), up to χ (11) as a function of the frequency of
a uniform external electric field. Over the frequency regime
shown, the coefficients are almost constant, but the higher-
order coefficients tend to increase at the largest frequencies
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FIG. 1. Results of calculations for the different terms in the power
series expansion, Eq. (2), as a function of frequency ω of a uniform
electric field.

considered in the present calculations. The increase indicates
that one approaches the regime of resonant transitions. Since
the life times of the excited states are neglected in the
present perturbative calculations, we have restricted ourselves
to calculations up to χ (11) and the frequency regime below
0.06 a.u. (corresponding to wavelengths of approximately
800 nm and longer). Note here already that, based on the
perturbative results in Fig. 1, it is unlikely that a negative
slope in the nonlinear susceptibility can be explained via the
power series expansion in the present theory, since the first
five coefficients of the series are found to be positive over the
frequency regime studied.

The convergence of the results presented in Fig. 1 was
tested well with respect to the size of the radial box, R0, and
the basis size. For the present set of calculations we have
found that a box size of R0 = 500 was sufficient to reduce
the error to be within 0.5%. The size of the numerical basis
in the present calculation is determined by the maximum
angular momentum [lmax = (N + 1)/2, where N is the order
of the coefficient calculated], and the maximum principal
quantum number (nmax) chosen. For a grid size of R0 = 500,
we varied the principle quantum number up to nmax = 800 for
our perturbative calculations.

In Fig. 2 we show results for χ (N) as a function of nmax for
R0 = 500 at ω = 0.056. One can clearly see that the results for
each of the coefficients converge to a finite value for large nmax.
The cross on each line indicates that the result is within 1% of
the corresponding value at nmax = 800. As one would expect,
each higher-order term requires additional states to be included
in the calculation in order to reach convergence. Furthermore,
the dashed line at nmax = 19 indicates the separation of bound
from continuum states in our basis set. For each of the
nonlinear coefficients (χ (N) with N � 3) we observe that
the contributions from the bound states to the coefficient are
positive while those from the continuum states are negative.
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FIG. 2. Perturbative susceptibility coefficients χ (N) in the power
series expansion, Eq. (2), as a function of the maximum principal
quantum number nmax in the basis set. The radial box size was R0 =
500. The dashed line denotes the transition from bound to continuum
sets in the present basis set, while the crosses indicate convergence
of the results within 1% of the respective result at nmax = 800.
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FIG. 3. The perturbative nonlinear susceptibility terms
χ (N)I (N−1)/2 scaled by χ (3)I as a function of the intensity of a
uniform electric field at 800 nm.

Thus, in order to reach convergence obviously both bound and
continuum states have to be included.

B. Breakdown of the perturbative power series expansion

In order to be applicable, the power series expansion,
Eq. (2), must converge. Since we cannot determine all the terms
in the expansion, we intend to estimate a region of applicability
by investigating the relative contributions from the low-order
nonlinear terms in the expansion. To this end, we have
determined the ratios of the higher-order nonlinear terms (N �
5) to the lowest-order nonlinear term, i.e., χ (N)I (N−1)/2/(χ (3)I )
as a function of the intensity I = |E|2. The results are shown in
Fig. 3 along with the sum of all higher-order terms calculated
with respect to the third-order term (solid line). For low
intensities (≈1012 W/cm2), each higher-order nonlinear term
is much smaller than the lowest-order nonlinear term in the
expansion. We therefore can expect that the power series
does converge in this intensity regime. On the other hand, at
high intensities (≈1014 to 1015 W/cm2) the trend is reversed:
higher-order terms are larger in magnitude than the lowest-
order term, indicating that the series may diverge.

In order to further narrow down the intensity regime
at which the convergence of the power series expansion
becomes questionable, we note that the ratio of the sum of
all higher-order terms calculated to the lowest-order nonlinear
term exceeds 10% at about 2 × 1013 W/cm2. From the results
in Table I, we further see that in this intensity regime the
ratio of successive terms in the perturbative power series
expansion does exceed 10%, which may be considered
as another indication for the inapplicability of the series
expansion.

TABLE I. Intensities (in units of 1012 W/cm2) at which the ratio
R = χ (N)I/χ (N−2) equals either 0.01 or 0.1.

N = 5 N = 7 N = 9 N = 11

R = 0.01 2.6 0.91 0.63 0.29
R = 0.1 26 9.1 6.3 2.9

C. Comparison of results of perturbative
and ab initio calculations

Ab initio calculations of the susceptibility are performed
for laser pulses at a central wavelength of 800 nm having a
sin2 envelope and a total pulse length consisting of a finite
number of electric field cycles. In order to compare our results
for the power series expansion, which are determined for a
uniform electric field, to those of the ab initio calculations, we
therefore need to account for the finite length and envelope
of the pulse. To this end, we have averaged each term of
the power series expansion over the intensity distribution of
the pulse.

The comparison of the results of the perturbative calcula-
tions and those of the ab initio calculations for a ten-cycle
pulse (Fig. 4) show excellent agreement at low intensities.
In this regime of intensities both results increase linearly
with intensity, in agreement with the expectation that the
lowest-order nonlinear term is dominant at these intensities.
At higher intensities, however, the results of the two calcu-
lations reveal an opposite trend. While the ab initio results
show, in good quantitative agreement with earlier predictions
[8,9], a negative slope for the susceptibility as a function
of intensity, the sum of the first five terms in the power
series expansion has a positive slope, as expected from the
positive sign of each term in the power series determined
here.

The peak intensity at which the discrepancy between per-
turbative and ab initio results equals 1% is given in Table II for
different pulse lengths at 800 nm. The result is slightly larger
than our estimates of the applicability limit of the perturbative
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FIG. 4. Comparison of results of perturbative (solid line) and ab
initio (dashed line) calculations for the susceptibility as a function of
peak intensity of a 10-cycle laser pulse at 800 nm.
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TABLE II. Peak intensities (in units of 1013 W/cm2) at which the
relative error between the results for the ab initio susceptibility and
the perturbative susceptibility equals 1% for laser pulses of different
pulse lengths (given in field cycles) at 800 nm.

Pulse length 4 10 16 30

Peak intensity 4.7 4.2 3.9 3.4

series expansion in the previous section, since the latter one
has been obtained for a uniform field. However, we can still
conclude that the negative slope of the susceptibility is a result
of the nonperturbative interaction between the hydrogen atom
and the intense laser pulse. Thus, an explanation of this feature
using higher-order-expansion terms (e.g., HOKE) appears to
be questionable and not applicable. This also implies that a
determination of higher-order terms from ab initio results in
the intensity regime above 2 to 4 × 1013 W/cm2 for atomic
hydrogen is meaningless. This is in agreement with the results
of Köhler et al. [33], who were not able to extract consistent
HOKE terms from results of ab initio simulations in this
intensity regime. Instead, if necessary, the atom-field dynamics
has to be treated using a nonperturbative theoretical description
of the polarization and susceptibility. We note that our results,
presented in Table II show that the critical intensity regime for
a breakdown of the perturbative approach slightly depends on
pulse duration of the pulse. We did not perform calculations
for other atoms, which would require an extension of the
numerical basis-state method to include spin-orbit effects.
However, we expect that the critical intensity regime depends
on the ionization energy of the atomic system, as also known
for other nonlinear processes. The critical intensity should
increase (decrease) for higher (lower) ionization potentials as
compared to the results presented for atomic hydrogen here.

IV. CONCLUSIONS

We calculated the electric susceptibility of atomic hydrogen
by using a numerical basis-state method, via a perturbative
power series expansion as well as the ab initio results for
the field-induced polarization. The results of our perturbative
calculations indicate a breakdown of the series expansion at
intensities in the lower range of 1013 W/cm2. Comparison
with the ab initio results shows a discrepancy in the trend
as a function of intensity in the same intensity regime. We
therefore conclude that the negative slope of the electric
susceptibility of atomic hydrogen at higher intensities cannot
be explained by the higher-order terms of a perturbative power
series expansion. Instead, the feature has to be considered as a
signature of the nonperturbative interaction between the atom
and the field.
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