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Finite-range time delays in numerical attosecond-streaking experiments
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We present results of numerical simulations and theoretical classical analysis of time delays with respect to
the instant of ionization in a numerical streaking experiment. We show that the time delay is related to a finite
range in space, which the emitted electron probes after its transition into the continuum until the streaking pulse
ceases. This finite-range time delay results from the coupling of the atomic potential and the streaking field and
strongly depends on the parameters, in particular the duration, of the streaking field. It can be represented as an
integral or sum over piecewise field-free time delays weighted by the ratio of the instantaneous streaking field
strength relative to the field strength at the instant of ionization.
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I. INTRODUCTION

Advances in extreme ultraviolet (XUV) laser radiation
technology have enabled the generation of single pulses as
short as about 100 as (1 as = 10−18 s). This makes it possible
to study the temporal dynamics of quantum processes, such
as a photoionization, on an unprecedented time scale [1].
Recently, experiments [2–4] have been performed to observe
whether the photoemission of an electron follows instantly
the variation of the incident light field. Among them, some
measurements used the attosecond streaking technique [5],
in which the momentum of the electron, emitted due to the
interaction with an ultrashort XUV laser pulse, gets varied
by a superimposed weak streaking field. The momentum (or
energy) of the photoelectron is then observed as a function of
the delay between the XUV and streaking pulses. Comparison
of the oscillating streaking patterns for electron emission from
different atomic shells [3] (or bands in the solid [2]) revealed
temporal offsets, which were attributed as a relative delay in
the photoemissions.

Originally, in the attosecond streaking technique the elec-
tron dynamics in the continuum was approximated as that of
a free particle in the streaking field with momentum k(0)

f (ti) �
k0 − As(ti), where k0 = √

2(ω − Ip) is the streaking-field-free
asymptotic momentum and As(ti) is the vector potential of the
streaking field at the time of ionization ti [6]. The effect of the
simultaneous interaction of the electron with the ionic potential
and the streaking field is neglected in this approximation.
Hence, theoretical analysis focuses on the following aspects:
How is the observed offset related to the Wigner-Smith (WS)
time delay [7,8] that measures the delay of an electron
propagating in a potential towards infinity as compared to
a freely propagating electron [3,9–18]? Which effect does the
streaking laser pulse, in particular the coupling between this
field and the atomic potential, have on the observed time delays
[13–22]? Do short- and long-range parts of these interactions
have to be separated [13–17]?

In previous theoretical analysis the temporal offset is often
separated into a sum of the field-free WS time delay and a
contribution induced by the coupling of the Coulomb potential
and the streaking field [13–21]. This separation promptly
provokes the concern that the WS time delay diverges for a
long-range potential such as the Coulomb interaction between
an electron and its residual ion [8,23,24]. In the theoretical

analysis the corresponding term is therefore often limited to a
short-range part of the Coulomb interaction.

Results of our numerical simulations and theoretical anal-
ysis show that the temporal offset in numerical simulations is
determined by the electron dynamics in the combined potential
of the Coulomb and the streaking fields over a finite range in
time and space until the streaking pulse ceases. Due to the
strong impact of the parameters of the streaking field, the
streaking time delay can be represented as a sum of piecewise
field-free time delays weighted by the instantaneous streaking
field strength normalized to the field strength at the instant
of ionization [25]. The important aspect of this finite-range
interaction (a) removes any concerns about the divergence
of the WS delay from theoretical discussions, (b) makes
an a priori separation of short- and long-range parts of the
interaction unnecessary, and (c) links the observation of a time
delay to the detection of electrostatic potentials over larger
distances.

The paper is organized as follows. We first use the results
of numerical one-dimensional (1D) model calculations to
demonstrate the dependence of the streaking time delay on the
finite propagation distance of the electron wave packet until
the streaking pulse ceases. Next, we present a classical analysis
of the electron dynamics that further supports our conclusions.
Theoretical limits and the relation to the WS time delay as well
as subtle features in the numerical results are then discussed
based on the classical analysis. We conclude by presenting
applications to three-dimensional (3D) cases and end with a
summary of our results.

II. FINITE-RANGE TIME DELAY

A. Quantum simulations

We first consider the photoemission of an electron by an
ultrashort XUV laser field, which is initially bound in

V (x) = VCG(x) = − Z√
x2 + a

+ V0e
−(|x|−x0

σ )2

. (1)

VCG(x) consists of a Coulomb potential centered at x = 0
with effective charge Z and soft-core parameter a and a second
potential of Gaussian shape with depth V0 and width σ centered
at a distance x0 from the center of the Coulomb potential.
We investigate the influence of the Gaussian potential on the
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streaked momentum of the photoelectron. In order to clearly
show the effects, we have chosen potential parameters as
Z = 3.0, a = 2.0, σ = 2.0, and V0 = −0.5, − 2.0, and −4.0.
However, our conclusions do not depend on the choice of these
parameters. In all simulations the initial state is chosen to be
the ground state of the Coulomb potential, which has an energy
of −1.7118 and is not affected by the Gaussian potential as
long as x0 � 20.

We simulate a streaking experiment by numerically solving
the time-dependent Schrödinger equation (TDSE) represent-
ing the interaction of the electron with V (x), an XUV field
EXUV, and a streaking field Es ,

i
∂�(x,t)

∂t
=

{
p2

2
+ V (x) + [EXUV(t) + Es(t)] x

}
�(x,t),

(2)

where p is the momentum operator and E(t) =
E0 sin2(πt/T ) cos(ωt + φ) for both laser fields with peak
amplitude E0, pulse duration T , central frequency ω, and
carrier-envelope phase (CEP) φ of the respective field. We
solve Eq. (2) on a grid of size of 14 000 (from −7000 to 7000)
with �x = 0.05 and �t = 0.01 using the Crank-Nicolson
method. We propagated the wave function over long times
and large distances well after XUV and streaking fields have
ceased and the outgoing wave packet has passed the Gaussian
potential. The grid was chosen large enough such that the
wave function did not reach the boundaries. We obtained
the electron momentum spectrum by spatially separating the
outgoing part of the wave function from the remaining (bound)
part close to the center of the grid and then performing a
Fourier transform. We have checked that any error due to the
finite grid size or the plane-wave projection is negligibly small.
By varying the delay ti between the XUV and the streaking
pulses over the central cycle of the streaking field, we obtained
the streaked momentum of the photoelectron kf as a function
of ti . As pointed out before (e.g., [5,12–14]), the distribution
has a temporal offset or delay �ts with respect to the vector
potential at ti , which can be extracted by fitting kf (ti) to
k0 − αAs(ti + �ts), with a fitting parameter α � 1.

We consider photoemission from the initial state by an
XUV pulse with IXUV = 1 × 1015 W/cm2, ωXUV = 100 eV,
TXUV = 600 as, and φXUV = −π/2. The parameters of the
streaking pulse were Is = 1 × 1012 W/cm2, λs = 800 nm,
and φs = −π/2. In Fig. 1(a), we show the extracted values
for the delay �ts (stars, squares, and circles) for different
positions x0 of the Gaussian potential and a streaking pulse
having eight cycles. The delay �ts strongly varies when the
Gaussian potential is located close to the center of the Coulomb
potential and the amplitude of this variation increases with
an increase of the depth of the Gaussian potential. However,
independent of the strength of the Gaussian potential, �ts
remains constant for x0 > xfinite � 850, for which we obtained
the same numerical result with and without (diamond) the
Gaussian potential. Our simulations show that at the end of
the streaking pulse the center of the outgoing electron wave
packet was located at xfinite � 850. Thus, �ts accounts for
the presence of the Gaussian potential only when the electron
wave packet reaches the potential before the interaction with
the streaking pulse ceases.
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FIG. 1. (a) �ts as a function of the position x0 of the Gaussian
potential. We compare results of TDSE (stars, squares, and circles
for V0 = −0.5, − 2.0, and −4.0, respectively) with those of classical
calculations, Eq. (7) (lines). Also shown is the TDSE result without
Gaussian potential (diamond on the right end). In the classical
calculations the parameter α varied between 0.985 and 1.084.
(b) Comparison of �ts from TDSE for different cycle numbers of
the streaking pulse with (solid line with circles) and without (dashed
line with squares) the Gaussian potential. The Gaussian potential was
located at x0 = 650. Other parameters are given in the text.

To confirm this conclusion, we determined �ts for streaking
pulses having different durations while the Gaussian potential
remains located at x0 = 650. For short streaking pulses
(Ns � 5) we again obtained the same results for �ts in
simulations with [Fig. 1(b), solid line with circles] and without
(dashed line with squares) the Gaussian potential. In each of
these simulations the outgoing wave packet was located at
x < x0 = 650 at the end of the streaking pulse. In contrast, as
soon as the outgoing wave packet reaches x0 for N > 5, �ts
deviates from the result obtained in simulations without the
Gaussian potential.

B. Classical analysis

It is known that in strong-field physics the propagation
of an electron in the continuum can be often well described
by classical analysis (e.g., [26]). We therefore make use of
this method to gain further insights into our results. After the
transition into the continuum due to XUV photon absorption
the dynamics of the electron in the general 3D case is
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given by

dk
dt

= −Es(t) − ∇V (r). (3)

For a linearly polarized field the simultaneous interaction of
the electron with the field and the potential takes effect along
the direction of the polarization, which we choose as the x

axis:

dk

dt
= −Es(t) − dV

dx
. (4)

By multiplying dx to both sides of Eq. (4) and then integrating
it, the solution of Eq. (4) for the asymptotic momentum of the
electron at x → ∞ can be written as [27]

kf (ti) =
√

k2
i + 2V (xi) − 2

∫ T

ti

Es(t)k(t)dt

=
√

k2
0 − 2

∫ T

ti

Es(t)k(t)dt, (5)

with k0 =
√

k2
i + 2V (xi) = √

2(ω − Ip), ti the time, and xi

the location of photoelectron emission. By setting this result
equal to [for Es(ti) �= 0]

kf (ti) = k0 − αAs(ti + �ts) � k0 − αAs(ti) + αEs(ti)�ts,

(6)

as used in the fitting of the streaking results, we get

�ts �
αAs(ti) +

√
k2

0 − 2
∫ T

ti
Es(t)k(t)dt − k0

αEs(ti)
. (7)

It has been previously shown (e.g., [13,14]) that the results
of classical streaking simulations depend on the choice of the
initial position xi . We have chosen xi to be the most probable
position of the electron in the initial state [e.g., xi = 0 for
VCG(x)]. Alternatively, one can sample the initial conditions
in Monte Carlo calculations (see, e.g., [13]). To make use of the
classical analysis we further note that the temporal offset �ts
in Eq. (7) depends on the choice of α. We determined α such
that �ts remains approximately constant while varying ti over
one field cycle (solid line with squares in Fig. 2). Please note
that, independent of the choice of α, our classical prediction
for �ts diverges for Es = 0.

As exemplified in Fig. 1(a), our classical predictions for �ts
(solid lines) agree very well with the TDSE results (points).
In the comparison we have chosen liberation of the electron
at the peak of the streaking field within its central cycle. Our
results so far have a few important implications: �ts depends
on the coupling between the streaking field and the (atomic)
potential and, thus, on the parameters of the streaking field
Es(t) itself. Consequently, the time delay is determined by the
electron dynamics in the combined potential of the Coulomb
and streaking fields over a finite range in time and space until
the streaking pulse ceases at t = T . In view of this result any
previously raised theoretical concerns about a diverging WS
time delay are unnecessary. Our findings further imply that a
separation of short- and long-range parts of the interactions
for the analysis is not necessary. Finally, our results indicate
that the presence of an additional potential at a distance of
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FIG. 2. Classical predictions for the time delay as a function of
the delay between XUV ionizing and IR streaking pulses for different
fitting parameter α by using Eq. (7). Calculations are performed for
the 1D potential VCG(x) in Eq. (1) with Z = 3.0, a = 2.0, V0 = −0.5,
σ = 2.0, and x0 = 20.

the original location of the photoelectron can be detected by
observing �ts over different cycles of the streaking pulse.

C. Wigner-Smith time delay and theoretical limits

To study the relation of the finite-range time delay �ts to
the field-free WS time delay we further simplify Eq. (7). By
noting that the momentum shift kf (ti) − k0 in Eq. (5) is usually
small, we can expand the square root to first order. Assuming
α = 1, we obtain

�ts � 1

Es(ti)

∫ T

ti

Es(t)

(
1 − k(t)

k0

)
dt, (8)

which provides accurate results for liberation of the electron at
the peak of Es(t) within its central cycle. It is now instructive to
further rewrite Eq. (8) as a sum by assuming that the streaking
field and the electron momentum are approximately constant
in the time interval [tj ,tj + δt], i.e., Es(t) � Es(tj ) and
k(t) � k(tj ),

�ts � 1

Es(ti)

N∑
j=1

Es(tj )

(
1 − k(tj )

k0

)
δt (9)

�
N∑

j=1

Es(tj )

Es(ti)
�t

(j )
field−free. (10)

In Eq. (10) we further assumed that the streaking field Es(tj )
is weak as compared to V (x) and thus k(tj ) approximately
depends only on V (x) [23]. �t

(j )
field−free is a finite-range

piecewise field-free time delay that the electron accumulates
during its propagation in the time interval [tj ,tj + δt] and over
a related finite region [xj ,xj + δx] of the potential V (x) as
compared to the propagation of a free particle over the same
distance in space.

Equation (10) provides us with an interesting interpretation
of the observed time delay: It is neither the WS time delay
�tWS nor the simple sum of finite-range piecewise field-free
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FIG. 3. Classical estimates for the “field-free” delay distance of
an electron, released at the peak of a three-cycle streaking pulse
(wavelength of 800 nm) in the 1D Coulomb potential [i.e., V0 = 0 in
Eq. (1)], as a function of the XUV photon energy. This distance was
determined by the position of the electron at the time instant when
the streaking field changed to 99% (solid line) and 95% (dashed line)
of the peak field strength.

time delays. Instead, the piecewise field-free time delays are
weighted by the streaking field strength present when the
electron wave packet propagates over the corresponding part
of the potential. Thus, we can conclude that the streaking time
delay strongly depends on the electron dynamics in the coupled
atomic and time-varying streaking field potential.

In earlier work (e.g, [14,15,17]) the streaking time delay
was often separated into the sum of the field-free WS time
delay and a contribution accounting for the coupling. Although
we do not derive such a relation, we note that in Eq. (10)
Es(t1) � Es(ti) and therefore the first term of the sum is equal
to the field-free time delay, which the electron acquires during
[ti ,ti + δt]. The corresponding “field-free” delay distance over
which the electron travels during this time interval depends on
the electron energy (or XUV frequency) and the wavelength
of the streaking field. In Fig. 3 we present classical estimates
for this distance assuming that the electron is emitted at the
peak of a three-cycle near-infrared laser pulse. We note that
the calculated “field-free” delay distances are approximately
equal to short-range distances of atomic potentials.

Equation (10) further indicates that in certain theoretical
limits �ts can approach the WS time delay �tWS. In particular,
for short-range potentials V (x), �ts is approximately given by
the first term (i.e., j = 1) of the sum in Eq. (10) if the electron
wave packet propagates over the full range of the potential
during [ti ,ti + δt], while Es(t) � Es(ti). This condition should
be fulfilled in the following theoretical limits: (a) the effective
range of V (x) goes to zero, (b) the momentum of the electron
goes to infinity, or (c) the oscillation period of the streaking
field goes to infinity. To test our expectations, we performed
simulations for the 1D potential

V (x) = VC−WS(x) = − Z√
x2 + a

1

1 + e(|x|−xp)/b , (11)

which is a product of Coulomb and Woods-Saxon potentials,
where xp determines the effective range of the potential.

We have chosen b = 1 and xp � 10 such that VC−WS � VC for
|x| < xp, while VC−WS approaches zero quickly for |x| > xp.
To obtain the WS time delays, we used the back-propagation
method introduced in Refs. [23,24]. In Fig. 4 we compare
the results of the numerical simulations for �ts (solid lines
with circles and diamonds) as a function of (a) the potential
range xp, (b) the frequency of the ionizing XUV pulse, and
(c) the wavelength of the streaking pulse with the WS time
delay �tWS [dashed lines with squares for (a) and (b) and solid
circles for (c)]. All other parameters of the fields are kept the
same in the simulations. As expected, �ts approaches �tWS in
each of the three theoretical limits listed above.

D. Interpretation of other features in the numerical results

We note that more subtle features in our TDSE results, such
as the oscillations in Fig. 1(a) and the change from a decrease
to an increase in �ts as a function of xp in Fig. 4(a) can also be
well understood from the classical formulas. The oscillations
in Fig. 1(a) are caused by the Gaussian potential, which has
a very short effective range. The streaking delay contribution
due to the Gaussian potential can be therefore written as

�tG
s (x0) � Es(tG)

Es(ti)
�tG

WS, (12)

where ti and tG are the instant of ionization and the time
instant at which the electron reaches the Gaussian potential,
respectively. Thus, the streaking time delay induced by the
coupling of the streaking field and the Gaussian potential
should have an oscillation period proportional to that of the
streaking field, which can be easily confirmed from the results
in Fig. 1(a) by noting that tG � z0/k0.

The nonmonotonic behavior of the streaking time delay
in Fig. 4(a) can be explained by Eq. (8). Assuming that
the electron is ionized at the peak of the streaking field,
the absolute value of the time delay is expected to increase
over the first quarter of the streaking field cycle. However,
then the field changes sign and the absolute value should start
decreasing. The turning point at xp = 50 agrees well with the
classical estimate for the distance the electron travels within the
first quarter cycle after its release, namely xwp = k0Ts/4 = 54
at the present parameters.

E. Application to 3D cases

In Fig. 5 we show that the predictions of the classical
approximations, Eqs. (7) and (8), are in good agreement
with the results for the time delay �ts obtained in other
recently reported numerical streaking simulations for the
hydrogen atom and the helium ion. In these studies [4,13,17]
full 3D quantum simulations have been performed. The
agreement clearly supports our conclusions based on 1D
classical analysis.

Before concluding, we discuss the implication of our
analysis on the experimental observations of a relative time
delay between the photoemission from the 2s and 2p shells
in the neon atom [3]. Based on our classical approximation
we estimate a time delay �ts of about −5.2 as for the
emission from the 2p shell and of about −9.7 as for the
2s electron. These numbers are obtained using single-active
electron potentials and the field parameters given in Ref. [3].
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FIG. 4. (Color online) Results of numerical simulations for the
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the streaking pulse are compared with those for the WS time delay
[dashed lines with squares in (a) and (b) and solid circles in (c)].
Laser parameters are: IXUV = 1 × 1015 W/cm2, TXUV = 600 as,
ωXUV = 100 eV [(a),(c)], φXUV = −π/2, Is = 1 × 1012 W/cm2,
Ns = 3 cycle [(a),(b)], Ts = 32.02 fs [(c)], λs = 800 nm [(a),(b)], and
φs = −π/2.
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FIG. 5. Comparison of time delays from 3D quantum streaking
simulations (open circles, extracted from Ref. [13]) with the results of
the present classical approximations, Eq. (7) (solid lines) and Eq. (8)
(dashed lines). For both potentials the initial states are chosen to be
the 1s state. The parameter α varied between 1.003 and 1.067.

Thus, we estimate a relative time delay of about 4.5 as,
which cannot fully account for the experimentally observed
time delay of 21 as. Based on our analysis we conclude that
many-body effects (e.g., [9,17,28]) or the influence of other
factors, as discussed in Ref. [3], which would be considered
in the potential V , may contribute to �ts via a coupling with
the streaking field as well.

III. CONCLUSIONS

In summary, our results show that the time delay in numeri-
cal streaking simulations arises from the electron dynamics in
the coupled potential of the Coulomb and the streaking fields
and therefore strongly depends on the parameters, in particular
the duration, of the streaking field. The delay accounts for the
finite range of the potentials in space over which the electron
propagates after its emission until the streaking pulse ceases.
It can be represented as an integral or sum over field-free time
delays weighted by the instantaneous streaking field strength
relative to the field strength at the time of ionization.
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