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Numerical simulation of time delays in light-induced ionization
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We apply a fundamental definition of time delay, as the difference between the time a particle spends within
a finite region of a potential and the time a free particle spends in the same region, to determine results for
photoionization of an electron by an extreme ultraviolet laser field using numerical simulations on a grid. Our
numerical results are in good agreement with those of the Wigner-Smith time delay, obtained as the derivative of
the phase shift of the scattering wave packet with respect to its energy, for the short-range Yukawa potential. In
the case of the Coulomb potential we obtain time delays for any finite region, while—as expected—the results do
not converge as the size of the region increases towards infinity. The impact of an ultrashort near-infrared probe
pulse on the time delay introduced here is analyzed for both the Yukawa and the Coulomb potential and is found

to be small for intensities below 10'* W/cm?.
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I. INTRODUCTION

The development of attosecond extreme ultraviolet (XUV)
laser technology in recent years has offered the opportunity
to observe and control the dynamics of electrons and the
coupling to nuclear dynamics in atoms and molecules on
their natural time scale. In particular, the capability to lock
XUV pulses to a near-infrared (near-IR) pulse has initiated the
development of techniques in which the dynamics is triggered
by the attosecond pulse and observed as a function of the
delay between the XUV and the near-IR pulses. Experimental
observations include, among others, the time resolution of the
Auger decay [1], the dynamics of electrons in valence shell [2]
and excited states [3,4], shake-up processes [3], and delays
in the photoemission of electrons from different bands in a
solid [5] or different subshells in an atom [6,7].

In particular, observations of substantial time delays during
photoionization of atoms have generated significant theoretical
interest (e.g., [6-22]). These measurements are often analyzed
in terms of the so-called Wigner-Smith (WS) time delay (e.g.,
[6-8,10,11,13,18,22]). The WS time delay accounts for the
delay in the propagation of a particle in a potential as compared
to that of a corresponding free particle towards infinity in space
in an atomic or molecular scattering scenario [23,24]. It has
been pointed out [24] that this definition leads to a well-defined
time delay as long as the potential vanishes quickly enough at
large distances. In contrast, for long-range potentials, such as
the Coulomb potential, the WS time delay is an intrinsically
ill-defined concept. In view of this deficiency of the WS time
delay concept, sometimes short- and long-range parts of a
potential are considered separately (e.g., [10,11,18]). For a
given problem it may, however, be unclear where such
a separation is justified. Furthermore, the WS time delay
is often calculated via the derivative of the phase shift of
the wave function with respect to the energy of the particle
(e.g., [8,10,11,13,18,23,24]). This time-independent approach
does not enable an analysis of the delay as a function of time
during the interaction.

We therefore seek an alternative time-dependent theoretical
approach to calculate time delays in photoionization, which
addresses some of the concerns regarding the WS time delay
and its determination via the phase derivative outlined in
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the previous paragraph. We further attempt to apply such an
approach in time-dependent numerical grid simulations which
are known to be a powerful tool in calculating and analyzing
processes on an ultrashort time scale. The present theoretical
analysis of a time delay is intended to be general and not
focused, in particular, on the recent streaking experiments.
Once formulated, tested, and established, this may turn out
in the future to be a useful step towards understanding the
physics of time delays in streaking experiments and other
precise measurements of ultrashort time scales.

Our proposal is based on the quantum mechanical expres-
sion for the time a particle spends inside a certain region R of a
potential. By comparing this time to the corresponding time for
a free particle, a time delay is given, which is well-defined for
any finite region. This approach is also known to be the basis
for the WS time delay itself, which is nothing other than the
limit, if it exists, as the region R grows to infinity [23,24]. This
fundamental definition of a time delay has not been applied
in the analysis of time-dependent processes initiated or driven
by ultrashort laser pulses. However, it offers a few interesting
features: First, as mentioned above, for any finite region R the
time delay is well defined for any physical relevant potential
and independent whether or not the limit for an extension of
the region towards infinity exists. This enables a theoretical
analysis in particular for long-range potentials without any
restriction of the potential. Second, in the limit to infinity,
if well-defined, the time delay should converge to the WS
delay. Third, the time delay can be determined as a function
of time after the emission of the photoelectron, in the case
of a streaking experiment even during the interaction with
the probe pulse. This expands the options for a theoretical
analysis of ultrashort time-dependent processes. Fourth, there
is no a priori separation of short- and long-range parts in the
potential necessary and the influence of both contributions can
be studied.

In this paper we present and discuss the application of the
above-mentioned time-delay concept to the photoionization
process. We further show how the concept can be utilized
in time-dependent numerical simulations on a grid using the
backpropagation technique. While the theoretical approach
is developed and formulated in 3D, we restrict ourselves
to an implementation in 1D calculations. This is done in
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the present proof-of-principle study in order to carefully
investigate the convergence of the results with respect to the
grid parameters, which appears to be appropriate in view
of the required resolution of time delays on the order of
a few attoseconds. An application of the approach to more
dimensions is straightforward. We also show that in our
application of the concept the numerical results indeed agree
with the WS time delay, in case the appropriate limit exists.
We may emphasize that any time delay determined in the
present context is well-defined, even in the case of the Coulomb
potential, since we consider delays over finite ranges in space
only. Besides the introduction of this complementary concept
and the demonstration of its application to photoionization, we
consider one aspect of the recent observations of time delays
using attosecond XUV pump and near-IR probe pulses, namely
the impact of the probe pulse on the time delay introduced
here. We may note that this time delay does not necessarily
correspond to or fully include the time delay observed in
recent streaking experiments, since our method calculates (or
measures) the time delay directly in the time domain while, in
contrast, in the streaking technique a time delay is determined
indirectly via a momentum (or energy) measurement. Since
the probe pulse is usually ultrashort, the effect occurs over a
finite time and, hence, during the propagation of the electron
over a finite distance R in the potential only. Thus, the present
concept appears to be well suited and can therefore be used to
analyze the impact of the probing pulse for short- as well as
long-range potentials.

The paper is organized as follows. We first provide the basic
definitions for the calculation of a time delay with and without
a strong probing field and discuss the application in numerical
simulations. We then show that the numerical results for single
XUV photoionization are well-defined over finite distances
but clearly do not converge as R — oo in the Coulomb case,
in agreement with the discussion given in the early work by
Smith [24]. On the other hand, our numerical results are in
good agreement with those for the original WS time delay in
the case of a short-range potential. Finally, we investigate the
impact of an ultrashort near-IR probing pulse on the results
for the time delay. Our results indicate that the effect is small
as long as the intensity of the probe pulse does not exceed
1013 W/cm?.

II. THEORETICAL METHOD

In this section we introduce the theoretical method, which
we use to obtain time delays associated with the ionization
of a target system in numerical simulations. To this end, we
will first provide a set of basic definitions used in the method
before we discuss its use in numerical simulations.

A. Basic definitions

For a particle in a given state W(r,7) the time spent inside
aregion R with a potential V(r) can be expressed as (Hartree
atomic units, e = m = h = 1 are used throughout the paper)

[25]
tw R =/ dt/dr|\lf(r,t)|2. (1)
—00 R
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While ty g is, in general, finite for finite regions and any
W(r,t), it is useful to compare ty g to the time spent by the
free particle in R (or another reference time):

o0
tyo R =/ dt/drIlIJ(O)(r,t)|2. ()
—00 R

Here, W (r,1) is the free-particle state corresponding to
W(r,t). The difference between ¢y g and ¢ty g defines the time
delay associated with W(r,t), the region R and the potential
V(r):

Al\p,R =ty g — tyo R. (3)

The quantity Aty z is known to have a finite limit as the
radius of R grows to infinity if the interaction vanishes quickly
enough [24]. Thus, Afy r— o (and the associated quantum
mechanical operator) is well-defined for short-range potentials
V (r) only. Provided that the limit exists, Aty g_ o can be also
expressed as the energy derivative of the phase shift ¢ induced
by the potential V (r),

de
dE
which is commonly known as the WS time delay.

The definition given above provides a useful concept
to calculate time delays in time-dependent processes, in
particular on an ultrashort time scale. While it is known as
the basis for a derivation of the WS time delay in scattering
scenarios, to the best of our knowledge it has not been applied
for the theoretical analysis of processes initiated or driven by
ultrashort intense laser pulses. As an application, we intend to
obtain time delays in the form of the time difference, given
in Eq. (3), for a photoionization process. Physically, we are
interested in the time that an—initially bound—electron needs
to leave a certain region (centered about the location of the
residual target) following ionization due to the interaction
with an external light field. To this end, we note that the
expressions above can be readily applied to a particle in a
superposition of states and therefore consider the ionizing part
(i.e., the continuum parts) of the wave function \Ili(“’n)(r,t) in
our adoption of Eq. (1),

1 o ;
/ dt / dr|wi™(r 1)
Pion —00 R

where Pon = [0 dr|‘~IJi(1°“)(r,t — 00)|? is the ionization
probability. We renormalize the wave function via division
by Pon in Eq. (5) in order to be able to compare times and
time delays arising for the ionization from different initial
bound states W;(r,r = 0). We can then define the time delay
associated with the ionization from a specific initial bound
state analogous to Eq. (3) as

) “4)

Aty Rosoo = Alys =

2
)

)

ty, R =

Aty, r =ty, R — 1y o s (6)

where lIll.(o)(r,t) is the free-particle state corresponding to
the ionizing part of the wave function after transition from
the initial state W;(r,t = 0). According to this definition we
expect negative values for the time delays, since a free wave
packet should spend more time in a given region R than
the corresponding wave packet that has the same asymptotic
energy propagating in an attractive potential. We expect that
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Aty, r has a well-defined finite limit (for R — 00), i.e., the
WS time delay, for short-range potentials, but not necessarily
for long-range potentials such as the Coulomb interaction. In
view of the intrinsic negative time delays for finite regions, we
expect that the limit value is negative as well. We also consider
the difference in the time delays for the ionizations from two
different initial states W;(r,r = 0) and ¥;(r,t = 0) as

AT (Y, V)5 R) = Aty, r — Aty r. @)

B. Numerical simulations of time delays

In order to use the above definitions in a numerical
simulation of a photoionization process we need to identify
the ionizing part of the wave function \Ili(lon)(r,t), as well as

the corresponding free-particle state \Ifi(o) (r,t). Since it is not
straightforward to obtain, e.g., the time of ionization (e.g., [8])
and the form of the wave packet after the transition into the
continuum, it appears to be difficult to make use of Eq. (6) in
a numerical simulation directly. We circumvent this obstacle
by using the backpropagation technique.

We first solve the time-dependent Schrodinger equation
(TDSE) of the system, initially in the state W;(r,# = 0), under
the interaction with the external light field on a space-time
grid:

2

i%lll(r,t) = (% + V() + Viign(t) )‘I’(r,t), 8)

where p is the momentum operator and Vg (f) represents the
interaction with the ionizing light field. After the end of the
interaction with the light field we separate the ionizing part
of the wave function from the remaining bound parts, either
via projection onto analytically or numerically known states
or via spatial separation of the ionizing part at large distances
on the grid. After removal of the bound parts we propagate the
remaining ionizing part of the wave function backwards in time
without taking account of the interaction with the light field
using two different Hamiltonians, once including the potential
V(r),

9 . 2 .
iV = (”7 + v<r>) w0, ©)
and once as a free particle,
P 2
ig\lli(o)(r,t) - %wl@)(r,t). (10)

In order to calculate the time delay Aty,  for a givenregion R,
the wave packet has to be located outside of R at the start of the
backpropagation and the propagation needs to be terminated
as the wave packet reaches the center of R, i.e., the location of
the residual target ion. The latter point will be further discussed
in the application of the method below.

III. APPLICATION TO SINGLE PHOTOIONIZATION
BY AN XUV PULSE

A. Model systems

The theoretical method outlined above is, in general, appli-
cable to ionization of an atom or molecule in any light field.
Here we present results for the application to photoionization

PHYSICAL REVIEW A 87, 033420 (2013)

of an electron initially bound in two different model potentials.
First, we used a short-range Yukawa potential in 1D,

V() = — e ¥ an

y(x) = ————=e" 7,
Vita

where Z is the effective nuclear charge, a is the soft-core
parameter, and b is a parameter that determines the effective
range of this 1D potential. For our simulations we chose
Z =3.0, a = 2.0, and b = 30.0, which relate to energies of
—1.6742 and —1.0124 a.u. of the ground and first excited
states. As along-range interaction we made use of the Coulomb
potential in 1D:

Z
Jxlxa
For Z = 3.0 and a = 2.0, the energies of the lowest two states
are —1.7117 and —1.0807 a.u., which are close to the energies
of the Yukawa potential.

For the interaction with the XUV light pulse we used length
gauge, i.e.,

Velx) = — 12)

Viight(t) = Exuv(f)x, (13)

where Exyy represents a linearly polarized pulse with a sin?
envelope, i.e.,

Exuv(t) = Eosin’(rrt/7) sin(wt + ¢), (14)

where Ej is the peak amplitude, t is the pulse duration, w
is the central frequency, and ¢ is the carrier-envelope phase
(CEP).

To solve the corresponding TDSE, we used the common
Crank-Nicolson method in a grid representation. In general, we
used a spatial step of §x = 0.02 and a time step of §r = 0.002
in our simulations. The grid extended from —4000 to 4000 a.u.
for the numerical simulations of the model systems interacting
with an XUV pulse to hold the full wave function on the
grid. The initial ground and first excited states were obtained
by imaginary time-propagation method. We continued the
propagation of the wave function after the interaction with the
XUV pulse until the ionizing parts of the wave packet reached
a distance beyond |x| > 500 and hence were well separated
from the remaining bound parts. This allowed us to remove
the latter parts from the grid and remain the ionizing parts of
the wave function only. We then propagated the ionizing parts
at negative and positive x backwards in time independently,
either under the influence of the potential, Vy or V¢, or as a
free particle. We determined the corresponding times ty, g and
tyo  for both parts of the ionizing wave function and added
the two contributions. In the 1D calculations we defined the
region as R = [£Xinner, £ Xouter]s Where Xipner and Xoyer < 500
are the inner and outer boundaries, respectively, and the +
signs apply to backpropagation of the two parts of the ionizing
wave packet along the positive/negative x axis, respectively.
We absorbed the wave function beyond the inner boundary
Xinner USIng the exterior complex scaling method [26,27].

B. Boundaries and grid parameters

Based on the results of recent observations [6,7] and
calculations [8,10-12,22], we expect that the time delay Aty,
as well as the difference in the time delays for the ionization
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TABLE 1. Results of numerical calculations for the times ty, Rs
t\vf;”, r and the time delay Aty, r for different spatial steps éx and
a fixed time step of 6¢ = 0.002. Results are obtained for ionization
from the ground state of the 1D Yukawa potential and R = [0, & 460].
The parameters of the XUV pulse were peak intensity / = 1 x 103
W/cm?, frequency w = 100 eV, pulse duration T = 400 as, and CEP

¢ =0.

Spatial step fw, R ’np;O),R Aty, r

0.5 275.3389 274.4569 0.8820
0.2 240.6028 241.5927 —0.9899
0.1 236.8736 237.9043 —1.0307
0.05 235.9751 237.0109 —1.0358
0.02 235.7258 236.7628 —1.0370
0.01 235.6903 236.7274 —1.0371

from different initial states AT (\W;,¥;, R) are of the orders of
a few tens of attoseconds. Resolution of such small times
requires an analysis of the time and spatial steps in the
numerical simulations in order to establish appropriate limits
for grid parameters towards a convergence of the results in
the present studies. In Tables I and II we present a set of
numerical results obtained for different §x and §¢ in the case
of the Yukawa potential. We see that a convergence of the time
delay Aty, g within less than 0.001 a.u. (i.e., <0.025 as) is
reached for a time step of §r = 0.002 and a spatial step of
8x = 0.02. Similar conclusions hold for our studies with the
Coulomb potential as well.

As mentioned above, the time delay Aty, g depends on the
size of the region R, and should be negative and converge
to a finite limit for short-range potentials only. To test these
expectations, we performed a set of simulations for the time
delays for photoionization from the ground and excited states
of both potentials as a function of the outer boundary xgyer
by fixing Xipper = 0, i.e., for R = [0,Xoueer]- As expected, the
values for the time delays are negative and decrease for an
increase of the region R for each of the results presented in
Fig. 1. For the Yukawa potential (panel a) convergence is found
for outer boundaries xouer > 150. Consequently, for large
values of the outer boundary we obtain a well-defined value
for the time difference AT of the time delays for ionization
from the ground and the excited states.

In contrast, our results do not show a convergence for the
time delays as a function of the outer boundary in the case of

TABLE II. Results of numerical calculations for the times ty, R
and tw;m,  and the time delay Ary R for different time steps 8¢ and
a fixed spatial step of éx = 0.02. All the other parameters were the
same as in Table I.

Time step fy, R t%O)‘R Aty, g

0.1 237.0072 238.0431 —1.0359
0.05 236.0391 237.0757 —1.0366
0.02 235.7752 236.8121 —1.0369
0.01 235.7378 236.7747 —1.0369
0.005 235.7284 236.7654 —1.0370
0.002 235.7258 236.7628 —1.0370
0.001 235.7254 236.7624 —1.0370
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FIG. 1. (Color online) Time delays Aty, r and time difference
AT(W¥;,¥;,R) as a function of the outer integration boundary X,ur
for two potentials: (a) short-range Yukawa potential and (b) long-
range Coulomb potential. Time delays obtained for the ground and
first-excited states are represented by blue dashed lines and green
dash-dotted lines, respectively, while the red dotted lines show the
results for the time difference between the delays. In (b) the black solid
and blue dashed lines correspond to two different forward propagation
distances: (Xgorwara) = 2000 and 3000, respectively, for the ionization
from the ground state. In all calculations we have used an XUV
pulse with peak intensity 7 = 1 x 10" W/cm?, central frequency
w = 100 eV, pulse duration v =400 as, and CEP ¢ =0 for the
ionization.

the long-range Coulomb potential [see Fig. 1(b)]. This reflects
the well-known logarithmic divergence of the time delay for
this kind of potential and, hence, for ionization from any bound
state within the potential. Of course, in these cases a WS time
delay as the derivative of the phase shift [cf. Eq. (4)] cannot
be defined as well, since its derivation requires a finite limit
of Aty, r—oco. It is interesting to point out that the results
in Fig. 1(b) further show that the logarithmic divergence is,
in general, still present for the difference between a pair of
time delays obtained for the ionization from two different
initial states. Thus, such a time delay difference does not
simply depend on the short-range character of the potential
but contains information about the long-range part of the
potential and is therefore not well-defined as well. The present
results agree well with the conclusions of early works on time
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FIG. 2. (Color online) Time delays and difference between time
delays as a function of inner integration boundary X;pe;. Symbols and
laser parameters are the same as in Fig. 1. We also plotted the WS
time delays as black dots in this figure.

delays [24]. We may, however, reemphasize that any time delay
obtained for a finite region via the present method is finite
and therefore well-defined, even in the case of the long-range
Coulomb potential. As pointed out above, this allows us to
study certain aspects with respect to the parameters of the
XUV pulse and the effects of an IR streaking in the Coulomb
case.

It is necessary to point out that for the Coulomb potential
the time delay also depends on the distance that the ionizing
wave packet is propagated in the forward direction. This is
due to the long-range character of the Coulomb potential since
the central momentum of the ionizing wave packet decreases
with an increase of the forward propagation distance. Thus,
the velocity of the free particle during the backpropagation
decreases as well. In Fig. 1(b) we show this effect by presenting
results for the time delay from the ground state for two
forward propagation distances: (Xforwara) = 2000 (black solid
line) and 3000 (blue dashed line). As expected, the time
delays for (Xforwara) = 3000 are slightly smaller than those
for (Xforwara) = 2000. This shows the need to use rather
large grids for the numerical simulations in the case of a
Coulomb potential. However, this small dependence on the
forward propagation distance does not change our conclusions
regarding the convergence of the results towards infinite
regions.

We also note from the results in Fig. 1 that the time delay
increases most strongly in the region close to the center of
the potential, where the potential changes most strongly. This
indicates that the results should depend on the choice of the
inner boundary Xiner of the region R. To study this feature,
we fixed the outer boundary of R at xquer = 500, which is
large enough to obtain converged results in the case of the
Yukawa potential, and then varied the inner boundary Xjpne;-
The results in Fig. 2 show the expected dependence on the
choice of xjnner: The absolute values of the time delays decrease
by half as xjper increases from O to 5 a.u.. In the remainder
of the present studies we have chosen the xjy,e; = 0 a.u. as the
inner boundary, since this value corresponds to the expectation
value of x for all the bound states investigated here.

PHYSICAL REVIEW A 87, 033420 (2013)

C. Wigner-Smith time delay for photoionization
in a short-range potential

In the case of the Yukawa potential, we also compared our
numerical results, obtained in the time-dependent numerical
simulations, with calculations of the WS time delay as a
derivative of the induced phase shift, cf. Eq. (4), obtained from
a time-independent scattering approach. In order to obtain the
latter for photoionization by a light pulse with finite duration,
we first considered the scattering of an electron, incident from
x = —oo with a momentum k, of the short-range Yukawa
potential. We solved the corresponding time-independent
Schrodinger equation numerically using the fourth-order
Runge-Kutta method up to |x| = 500, projected the numerical
solution onto the appropriate plane-wave solutions for x —
+00, and obtained the WS time delay for the scattering process
AL as the derivative of the phase shift in the plane wave
propagating in positive x direction with respect to the energy
of the incident particle. In order to take account of the energy
spread of the ionizing wave packet in a specific photoionization
process, we averaged Até,f,csat) over the energy spectrum of the
wave packet, as obtained in our time-dependent numerical
simulations. Finally, we considered the photoionization as a
half-scattering process and divided the result of the average
by two. The resulting WS time delays for photoionization
are shown as black dots in Fig. 2 and are in good agreement
with our numerical results, obtained from the time-dependent
calculations, for Xijpner = 0 and xouer = 500. This is in support
of the applicability of our approach to obtain time delays from
the time-dependent numerical simulations.

D. Dependence of time delay on XUV pulse parameters

Next, we studied the dependence of the time delay intro-
duced here on the parameters of the XUV ionizing pulse for
photoionization from the ground state of the Yukawa potential.
In Fig. 3 we present our results as functions of (a) the XUV
frequency at a fixed pulse duration of v = 400 as and (b) the
duration of the XUV pulse at a fixed frequency of v = 100 eV.
The peak intensity was I = 1 x 10'> W/cm? and the CEP was
¢ = 0 in each of these simulations.

The results agree well with qualitative expectations. The
absolute value of the time delay decreases towards zero as
the frequency of the ionizing XUV pulse and, hence, the final
kinetic energy of the emitted electron increases [cf. Fig. 3(a)].
This is due to the fact that the effect of the potential on
the motion of the electron becomes negligible in the limit
of infinitely large kinetic energy of the electron (i.e., infinite
large XUV frequency) and, therefore, the time spent in the
potential approaches that of the free particle in this limit.

We further find that the absolute value of the time delay
decreases with an increase of the XUV pulse duration
[Fig. 3(b)]. This dependence is closely related to that presented
in Fig. 3(a) and can be qualitatively understood as follows.
Due to the finite pulse duration the ionized electron wave
packet has a certain bandwidth about a central kinetic energy.
Consequently, the time delay obtained for the wave packet can
be considered as an average over contributions at particular
electron energies within the bandwidth (weighted by the
ionization probability at a given energy). As indicated by the
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FIG. 3. (Color online) Time delays for ionization from the ground
state of the Yukawa potential as functions of (a) the XUV photon
frequency (r = 400 as) and (b) the pulse duration of the XUV pulse
(w = 100 eV). A comparison between results from the present TDSE
calculations (red diamonds) and those for the WS time delay (blue
open squares) is shown. Other laser parameters were [ = 1 x 10°
W/cm? and ¢ = 0.

results in panel (a) the time delay does not change linearly
with the kinetic energy. Therefore, the time delay obtained for
a wave packet will be smaller than its contribution at the central
kinetic energy or the expectation value of the kinetic energy.
This difference decreases and, thus, the time delay for the wave
packet increases as the energy bandwidth of the wave packet
decreases, i.e., as the pulse duration increases. Furthermore,
it is found that the expectation value of the kinetic energy of
the ionizing wave packet increases as the XUV pulse duration
increases, which also causes the time delay to increase.

For each of the results from the time-dependent simulations
presented in Fig. 3 we also calculated the WS time delay for
photoionization, as described in the previous section. Again,
we found excellent agreement between the results from the
time-independent scattering approach (blue open squares in
Fig. 3) and our numerical time-dependent simulations. We may
note parenthetically, that our simulations results also agree
well with those of classical calculations (not shown) in which
the time delays are determined by

Xouter 1

-xouter
dx — , (15
. s v~ ar P

Alclassical =
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where (E) is the expectation value of the kinetic energy E of
the electron for a given ionized wave packet.

IV. STREAKING OF PHOTOIONIZATION PROCESSES
BY NEAR-INFRARED FIELD

In an attosecond streaking experiment [28], an IR field is
used to map time information to the momentum space. One
of the questions that arise in this context is whether or not the
streaking field influences the observed quantities. Although the
time delays introduced here do not necessarily correspond to
those observed in recent streaking experiments, we can show,
in general, how the effect of the streaking field can be studied
with our present method. To this end, we first discuss how the
streaking field can be included in the numerical simulations of
time delays and then study the impact of a streaking IR field
on the time delays for the short-range Yukawa as well as the
long-range Coulomb potential by varying the parameters of
the streaking field.

A. Streaking field in the numerical simulation

The streaking field is represented by an additional potential
Vitreak, Which we consider as part of the potential V(r) in
Eq. (8). Thus, in the present calculations the streaking field is
considered on equal footing with the atomic potential. After
(forward) propagation of the wave function from its initial
state and separation of the bound and ionizing part of the
wave function, we then propagate the ionizing part of the
wave function backwards, once within the combination of
the atomic potential and the streaking field and once as a
free particle.

As a result we obtain the time delay, associated with the
ionizing part of the wave function in the combined potential
of the short- or long-range interaction and the streaking
field as

AR, = 158 — tyo &, (16)
where t&f}?}z is the time the ionizing wave packet spends in
region R in the presence of the (short- or long-range) potential
and the IR streaking field and #yo g is the time for the free
particle case.

Here, the forward propagation of the wave function has to
be continued as long as the IR streaking field is present. As
noted above, for the long-range Coulomb potential the time
delay depends on the distance the wave packet is propagated
in the forward direction. In order to keep the corresponding
error small in our current analysis we used a large grid of
—13000 to 13000 a.u. and stopped the forward propagation
when the expectation value of the ionizing wave packet reaches
8000 a.u. We increased the spatial step to §x = 0.1 and the time
stepto 8¢t = 0.02 as compared to the previous calculations. Test
calculations showed that the relative error of the present results
is about 1%. In order to compare with the results, presented
above, we considered the same parameters for the Yukawa and
the Coulomb potential as before. We chose the first excited
state as the initial state and checked that the ionization induced
by the IR field is negligible up to a streaking field intensity
of 1 x 10" W/cm?, which is large enough for the streaking

purpose.
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FIG. 4. (Color online) Time delays (top row) and time delay
differences (bottom row) as a function of outer boundary Xoyer Of
R for Yukawa potential (left column) and Coulomb potential (right
column). For each potential we have centered the XUV pulse at
two different positions, which correspond to the maximum (blue
dash-dotted line) and zero (green solid line) of the IR vector potential,
respectively. The XUV parameters are Ixyy = 1 x 10" W/cm?,
wxuy = 100eV, txyy = 400 as, and ¢xyy = 0. The IR parameters are
Ig =1 x 10" W/cm?, Ag = 800 nm, Ng = 3 cycle, and ¢ = 0.
The small box in (d) shows the long-range behavior of the two curves.

B. Effects of the probing pulse on time delays

In order to analyze the effect of the IR probing field we
obtained the time delay for photoionization from the first
excited state of the Yukawa as well as the Coulomb potential in
the streaking field. To this end, we applied the ionizing XUV
pulse centered at the maximum of the IR streaking field (zero
of the vector potential) as well as centered at the central zero
of the IR streaking field (maximum of the vector potential).
In the upper row of Fig. 4 the results for the time delays in
the streaking field (green solid lines, XUV centered at zero
of the vector potential; blue dashed lines, XUV centered at
maximum of vector potential) are shown as a function of the
outer boundary xquer Of the region R for the Yukawa (left)
and the Coulomb potential (right). As in the results without
streaking field, we see that there is a well-defined limit of
the time delays for the short-ranged Yukawa potential as the
region R increases, while there is no convergence found for
the Coulomb potential.

In order to see the effect of the probing field, we present in
the lower row of Fig. 4 the difference between the time delays
in the streaking field and those without streaking field as a
function of the outer boundary of the region R, i.e.,

AT = At§ y — Aty, k. (17)

Although there is no well-defined limit of the time delays for
infinite regions in the Coulomb case, neither with nor without
streaking field, for any finite region the time delays introduced
here are well-defined and the effect of the streaking field can be
analyzed. The same argument applies to the weak dependence
of the Coulomb results on the distance of forward propagation
in our simulations.
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FIG. 5. (Color online) Time delays with (blue open squares) and
without (blue solid circles) IR streaking field as well as relative
differences between the results (green solid triangles) as a function
of XUV central frequency for (a) Yukawa potential and (b) Coulomb
potential. The XUV pulse was centered at the middle (maximum
vector potential) of the IR field. Other laser parameters are the same
as in Fig. 4. For the Coulomb case the time delays are calculated at
Xouter = 800.

For both potentials, we see that the time-delay difference
AT oscillates for xguer < 400. This oscillation is due to
the presence of the IR field, since the ionized wave packet
propagated up to about x =~ 400 before the IR streaking field
ceased in the present simulations. We note that the differences
AT are small, less than 3% for the Yukawa potential and less
than the numerical error of 1% for the Coulomb potential,
compared to the time delays induced by the atomic potentials
themselves. In the present calculations we therefore do not
find a significant effect of the streaking field, neither for a
short-range nor for a long-range potential.

Before we continue to study further the influence of the IR
streaking field, we note a subtle point in the results obtained
for the Coulomb potential, which are presented in Fig. 4.
While neither the time delays with and without streaking
field converge as a function of the outer boundary xyer,
we find a converged result (within the numerical error) for
the time-delay difference AT if the XUV pulse is centered
about the zero of the vector potential of the streaking field
[see green solid line in Fig. 4(d)]. This occurs since in this
case the momentum distribution of the ionizing wave packet
at the end of the forward propagation is the same as that of
the no-streaking-field case. In contrast, if the XUV pulse is
applied at the maximum of the vector potential of the streaking
field, the final momentum distribution is shifted and thus no
convergence of the time delay difference within the range of
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FIG. 6. (Color online) Relative differences of time delay as
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potential. The XUV pulse is centered at the middle of the IR field.
Laser parameters are the same as in Fig. 4 except Ig is changing. For
the Coulomb case the time delays are taken at xouer = 400, 800, and
1200.

present boundaries is found [see blue dashed line in the inset
of Fig. 4(d)].

The conclusion that the streaking field does not influence
the time delay introduced here significantly holds over a
large range of XUV frequencies as well as for intensities of the
streaking field up to about 10'> W/cm?. In Fig. 5 we present the
results for the time delay obtained in (a) the Yukawa potential
and (b) the Coulomb potential with (blue open squares) and
without (blue solid circles) streaking field as a function of the
XUV frequency. Since the results are in close agreement we
also show the relative difference between them (green solid
triangles), which does not exceed 5% and 2% in the Yukawa
and Coulomb case, respectively.

As one would expect, the relative difference between the
results for the time delay obtained with and without streaking

PHYSICAL REVIEW A 87, 033420 (2013)

field do increase with an increase of the IR streaking field
intensity. This can be clearly seen from the results shown in
Fig. 6. It appears that for IR intensities up to 10> W/cm?
the relative difference between the results is small enough
that there is no significant effect on the time delay. While the
relative difference quickly increases beyond 10% in the case of
the Yukawa potential with a further increase of the IR intensity,
the 10% limit is not reached for an IR intensity of 10'> W/cm?
in the case of the Coulomb potential.

V. CONCLUSION

In summary, we have applied a fundamental definition of
time delay to time-dependent numerical simulations on the
grid. To this end, we have obtained the difference between
the time a particle spends in a finite region of a potential
and the time a free particle spends in the same region
using a backpropagation technique. Our method expands the
options for a theoretical analysis of ultrashort time-dependent
processes. For any finite region in space the time delay
introduced here is well-defined, even for long-range potentials,
and time delays can be determined as a function of time after
the emission of the photoelectron. The method is applied to
photoionization of an electron in a short-range Yukawa as well
as a long-range Coulomb potential by an attosecond XUV
pulse. It is found that the numerical results are in excellent
agreement with those for the (asymptotic) WS time delay,
obtained as the derivative of the phase shift with respect to the
energy, for the short-range potential. In contrast, the numerical
results in the case of the Coulomb potential are finite for any
finite region, but they do not converge as the region increases to
infinity, as expected. The well-defined time delays for a finite
region enabled us to study the impact of a near-IR streaking
(or probing) pulse for both potentials. For the time delays
introduced in this paper, our results show that the effect is
small as long as the intensity of the probing field is below
10" W/cm?.
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