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Abstract: Rigorousquantum calculations of the femtosecond ionization
of hydrogen atoms in air lead to highly anisotropic electron and ion
angular (momentum) distributions. A quantum Monte-Carlo analysis of the
subsequent many-body dynamics reveals two distinct relaxation steps, first
to a nearly isotropic hot nonequilibrium and then to a quasi-equilibrium
configuration. The collective isotropic plasma state is reached on a picosec-
ond timescale well after the ultrashort ionizing pulse has passed.
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1. Introduction

The interaction of atoms and molecules with an intense ultrashort laser pulse (USP) plays a
decisive role in a wide range of modern physics including high-harmonic generation (HHG) [1],
pulse propagation, and filamentation in gases [2]. Besides the USP induced ionization process
itself, an interesting question concerns the characterization of the generated electrons and ions
and their coupling to electromagnetic fields.

Due to the fundamental quantum mechanical energy, momentum, and angular momentum
conservation laws, the strong-field ionization initially generates highly anisotropic angular (mo-
mentum) photoionized electron/ion distributions. The precise nature of these distributions de-
pends sensitively on the ionizing femtosecond pulse, in particular its peak intensity, duration,
polarization state, wavelength, pulse shape, and the species (atom or molecule) being ionized.
Quite recently it has become possible to experimentally analyze these distributions using novel
electron holographic techniques based on velocity imaging measurements [3] that generate
ultrafast, high resolution snapshots of the ionization process and allow for quantitative compar-
ison with rigorous theory and simulation.

In this paper, we present a microscopic analysis of the short-time dynamics of photoionized
electrons created by an intense few cycle laser pulse and initially correlated with their parent
nucleus. We use Monte-Carlo methods to simulate the electron relaxation processes governed
by their mutual Coulomb interaction and the scattering from ions.

Initially, the photoionized electrons occupy the states of anisotropic momentum and angu-
lar momentum distributions and take a time, longer than the current ionizing pulse, to relax
toward a genuine electron plasma. Such a plasma is characterized by a Fermi-Dirac quasi-
equilibrium distribution which is fully defined by the electron density and their kinetic en-
ergy, i.e. the plasma temperature. Clearly such a distribution is completely isotropic, depending
on the absolute value of the carrier momentum only. Due to the basic conservation laws of
Coulomb-induced carrier relaxation, the carrier density, total momentum and the kinetic carrier
energy remain unchanged in the carrier kinetics. Hence, the anisotropy of the carrier distribu-
tions is the important quantity on which basis one can determine how far the electron distribu-
tion is removed from a real plasma state. Our microscopic modeling allows us to identify and
quantitatively characterize the nonequilibrium regime where the anisotropy of the distributions
might play an important role. Based on these results, we identify the physical conditions and the
characteristic timescales after which the use of isotropic equilibrium plasma models becomes
justified.
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2. Theoretical approach

To investigate the ionization process and the evolution from the individual electron distribu-
tion into the state of a collective plasma, we have to solve the nonlinear light-matter interaction
and the many-body dynamics governed by the electron-light, electron-electron and electron-ion
Coulomb interactions. Here, the relevant equation is the quantum Boltzmann equation (BME)
for a Wigner functionf e

W (r, k, t) which is generally a function of space and momentum coordi-
nates as well as time. The BME includes drift and diffusion terms, the interaction with external
fields, collision integrals as well as ionization and recombination terms

[

∂
∂ t

+
h̄k
me

·∇r −
1
h̄
(∇V ) ·∇k

]

f e
W (r ,k, t)

=
∂
∂ t

f e
W (r, k, t)|collision +

∂
∂ t

f e
W (r, k, t)|ionization +

∂
∂ t

f e
W (r, k, t)|recombination . (1)

Ignoring the collision, ionization and recombination on the right hand side of the equation and
inserting the Lorentz force−∇V = qe (E+v×B) with h̄k = mev in the drift term leads to the
Vlasov equation. Ideally, one would have to treat the full problem of strong-field ionization
together with the many-body dynamics at the level of quantum kinetic theory. However, for
realistic systems, the numerical solution of the complete process described by Eq. (1) is not
feasible with current-day computer resources.

Fortunately, for the case of ultrashort-pulse photo-ionized electrons in dilute gases, the full
problem can be simplified considering the basic physical conditions. The ionization with the
high intensity light pulses happens on the timescale of several femtoseconds whereas for typ-
ical electron densities around 1023/m3 the inverse plasma frequency is up to one picosecond.
This allows for the separation of the ionization and relaxation dynamics. Furthermore, a typ-
ical length scale for electrons should be around the Bohr radius (aB ≃ 0.05nm). In contrast
typical laser wavelengths (several 100 nm) or filament diameters (around 50µm) are much
larger. Therefore, we can restrict the electron dynamics after the ionization to an evolution on
the electronic length scale of a quasi-homogeneous electron gas which allows for dropping the
space coordinate. Even with these approximations, the numerical solution still remains very
time demanding.

To demonstrate the feasibility of this scheme, we treat a dilute gas of hydrogen atoms inter-
acting with an intense short laser pulse. This choice allows us to avoid any electron correlation
effects during the nonlinear ionization process by the field, which need to be approximated for
other atomic systems. Furthermore, it is has been shown [4] that momentum distributions ob-
tained for the hydrogen atom are in excellent agreement with experimental data for noble gas
atoms [5] which demonstrates that the exact form of the atomic Coulomb potential does not
influence the qualitative ionization features.

We determine the initial momentum distribution of the electrons following strong field pho-
toionization by solving the time-dependent Schrödinger equation of an individual hydrogen
atom in dipole approximation:

ih̄
∂
∂ t

Ψ(ρ,z; t) =

[

p2

2me
− e2

4πε0r
+ eE(t)z

]

Ψ(ρ,z; t) (2)

where r = (ρ,z,φ) and p are the coordinate and the conjugate momentum operator of the
electron. We assume an exciting linearly in z-direction polarized laser pulse represented by the
electric field

E(t) = E0sin2
(πt

T

)

sin(ωt + χ). (3)
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Fig. 1. Relaxation of an anisotropic nonequilibrium electron distribution createdby ioniz-
ing hydrogen atoms with a 400nm 3-cycle pulse of intensityI = 1×1014W/cm2. Above,
H(k,θ) for different times in units of 1/fpl(N

e) (a) t = 0, (b)t = 0.31, (c)t = 1.04 and (d)

t = 6.25. Here,kz = k cos(θ) andkρ = k sin(θ) = (k2
x +k2

y)
1/2. Below, in (e) the correspond-

ing θ -angle integrated̄H(k). The yellow area shows the final Fermi Dirac distribution with
T = 19797K andĒ = 2.559eV for (e). The total electron density isNe = 2.155×1023/m3

which corresponds to an inverse 3D plasma frequency 1/fpl(N
e) = 0.240ps.

with E0, h̄ω, χ andT are the peak amplitude, frequency, carrier-to-envelope phase and total
duration of the pulse. Since the Hamiltonian in the time-dependent Schrödinger equation (2) is
symmetric with respect to rotations over the polarization axisz, the solutionΨ(ρ,z; t) does not
depend on the angleφ . We discretize the Schrödinger equation on a spatial grid with spacings
∆ρ = ∆z = 0.1 a.u. and use a time step of∆t = 0.03 a.u. Grid sizes of up to 1200 and 8000 points
in ρ andz directions, respectively, are implemented with cos1/6 mask functions at the edges.
The grids were large enough to keep the configuration space wavefunction on the grid for anal-
ysis of the momentum distributions. We have checked that the results are not influenced by the
boundary conditions. The solutionΨ(ρ,z; t) is propagated using the Crank-Nicolson method
and the wave function of the (initial) 1sground state of the hydrogen atom is obtained by imag-
inary time propagation. The electron momentum distributions are obtained by projection of the
full configuration space wavefunction at the end of the pulse onto the analytical solutions of the
outgoing continuum wave function, as given in the literature (e.g. [6]), represented on the grid.

Examples of the computed photoelectron momentum distributions are shown in Figs. 1 (a), 2
(a) and 3 (a) for 400nm pulses with 3 or 6 cycles, respectively. The assumed densities are in the
range of the values reported in the literature, i.e. a few 1023/m3 [7,8] or around 5×1022/m3 [9].
These distributions are rotationally symmetric around the polarization direction of the light
field, the z-axis. We clearly see that the initial distributions are highly anisotropic, which is in
agreement with results of previous calculations obtained in a similar parameter regime [4].

In each case a minimum number of 5 photons needs to be absorbed from the field to pho-
toionize the hydrogen atom. However, absorption of more photons is likely and leads to the
generation of electrons with larger momenta. The different orders of this above threshold ion-
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Fig. 2. Relaxation of an anisotropic nonequilibrium electron distribution createdby ioniz-
ing hydrogen atoms with a 400nm 3-cycle pulse of intensityI = 5×1013W/cm2. Above,
H(k,θ) for different times in units of 1/fpl(N

e) (a) t = 0, (b) t = 0.31, (c)t = 1.04, (d)
t = 6.27. Below, in (e) the correspondingθ -angle integrated̄H(k). The yellow area shows
the final Fermi Dirac distribution withT = 14273K andĒ = 1.845eV . The total electron
density in (a)-(e) isNe = 2.402× 1022/m3 which corresponds to an inverse 3D plasma
frequency 1/fpl(N

e) = 0.718ps.

ization process (ATI, [10]) are clearly seen for the longer pulse as a series of concentric rings
separated by∆k =

√
2meh̄ω, whereme is the mass of the electron [11]. The ATI rings do not

appear in the case of the 3-cycle pulse, since the ATI process can be understood as interfer-
ence between electron wavepackets generated at two successive field maxima of (nearly) the
same amplitude, which is not fulfilled for an ultrashort 3-cycle pulse. Thus, in these cases for
the relatively low intensitiesI = 1×1014W/cm2 (Fig. 1) and forI = 5×1013W/cm2 (Fig. 2)
the initial distributions ink (black lines in panels (e)) are broad without significant structure
in form of maxima and minima. However, the average energy absorbed from the field mainly
depends on the wavelength and the intensity of the laser pulse. Therefore, it is approximately
the same in Figs. 2(a) and 3(a) (both obtained for an intensity of 5×1013 w/cm2) but it is dif-
ferent in Fig. 1(a) (obtained at 1×1014 W/cm2). Please also note, that in the 3-cycle case the
distributions show a strong asymmetry with respect tokz = 0. This indicates that the ionization
process strongly depends on the carrier-to-envelope phase, which is chosen asχ = π/2 in the
present calculations. In agreement with experimental observations [12] the asymmetry almost
disappears for the 6-cycle pulse. This anisotropy leads to a non-vanishing average momentum
k̄z of the photoionized electrons, i.e. a dc currentJz ∝ k̄z. However, this current will be damped,
e.g., by the many-body Coulomb scattering. Values of the average momentumk̄z for different
times after the ionization are shown in section 3. A detailed investigation of the current strength
depending on the pulse parameters can be found in [13].

For the relaxation dynamics of the anisotropic electron momentum distributions and the pro-
cess of quasi-equilibrium plasma formation, we solve the quantum Boltzmann equation (1) with
the previously introduced approximations. Since the electron-ion recombination happens on a
nanosecond [7] timescale, the number of free electrons and ions is approximately conserved
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Fig. 3. Relaxation of an anisotropic nonequilibrium electron distribution createdby ioniz-
ing hydrogen atoms with a 400nm 6-cycle pulse of intensityI = 5×1013W/cm2. Above,
H(k,θ) for different times (a)t = 0/ fpl , (b) t = 0.25/fpl , (c) t = 1/ fpl , (d) t = 5/ fpl .
Below, in (e)H̄(k) for the same times. The yellow area shows the final Fermi Dirac dis-
tribution (T = 14283K, Ē = 1.846eV ). The total electron density isNe = 7.743×1022/m3

corresponding to an inverse 3D plasma frequency of approximately 1/fpl(N
e) = 0.400ps.

during the carrier relaxation into the quasi-equilibrium collective plasma state. Thus in the ab-
sence of further external fields – as the already gone ionizing pulse –, the BME reduces to its
collision integrals,

∂t f e
k |e−λ collision =

2π
h̄ ∑

p,q
V 2
|q|(1− f e

k )(1− f λ
p ) f e

k−q f λ
p+qδ (∆Ee,λ

k,p,q)

− 2π
h̄ ∑

p,q
V 2
|q| f

e
k f λ

p (1− f e
k−q)(1− f λ

p+q)δ (∆Ee,λ
k,p,q)

λ ∈{e, i},∆Ee,λ
k,p,q = h̄2|k|2−h̄2|k−q|2

2me
+ h̄2|p|2−h̄2|p+q|2

2mλ
(4)

where f λ
k andmλ denote the momentum dependent probability distribution and mass of the

electrons (λ = e) and ions (λ = i), respectively. Theδ -distributionδ (E) provides the energy
conservation during the scattering.

The Coulomb potentialVq is screened using a Debye screening constantκD which is obtained
as theq = 0-limit of the static Lindhard formula [14] for the final equilibrium distributions. Due
to their large mass the ions hardly contribute to the screening.

Many properties of the Boltzmann Coulomb collision integral are well known. The long-term
equilibrium solution is a Fermi-Dirac distribution which approaches a Boltzmann distribution
in the non-degenerate limit. Furthermore, the Coulomb collisions conserve the particle num-
ber, the total momentum and total energy of the electron-ion gas but allow for the exchange
of momentum and energy between the individual particles. Due to the large mass difference
of electrons and ions the electron ion scattering is pretty much restricted to elastic scattering
events where the absolute values of the electron momentum|k| ≃ |k −q| and the ion momen-

(C) 2012 OSA 30 January 2012 / Vol. 20,  No. 3 / OPTICS EXPRESS  2315
#157564 - $15.00 USD Received 3 Nov 2011; revised 20 Dec 2011; accepted 23 Dec 2011; published 18 Jan 2012



tum |p| ≃ |p+q| are conserved. As a consequence, the electron-ion interaction is only relevant
for anisotropic initial conditions where the electron-ion interaction contributes to the reduction
of the anisotropy and is the only way to change the average momentum of the electron sys-
tem. Furthermore, in the non-degenerate limit only the total number of ions contributes to the
electron dynamics which effectively decouples the ion and electron dynamics.

Under these conditions, the final equilibrium distribution of the electrons is determined once
we know the number of free electrons generated and their average energyĒ. Even for typical
experimental conditions of strong short-pulse ionization – as considered here – we are still
in the non-degenerate limit such that(1− f λ

k ) ≃ 1. This allows for direct determination of the
temperatureT of the final equilibrium electron plasma by the well-known propertyĒ = 3/2kBT
of Boltzmann distributions.

To describe the dynamic evolution of the probability distribution, we numerically solve the
Boltzmann collision integral. Due to the high dimensionality of the momentum integrals, a
direct integration using e.g. a Runge-Kutta method is unpractical. Therefore, we resort to the
Monte-Carlo technique which is widely used for these kind of problems, e.g. in semiconduc-
tor device simulations [15]. To efficiently evaluate the electron-electron scattering rates in our
anisotropic configuration, we use the so-called self-scattering method introduced by Brunetti
et al. [16]. Due to the highly anisotropic initial distribution, we have to simulate up to 107

particles.
For a quantitative analysis of the relaxation dynamics, we calculate the distribution functions

f (k,θ) in spherical coordinates using the momentum-histograms of the simulated particles.
Taking advantage of theφ symmetry we have already dropped anyφ -angle dependence here
and introduce for use in Fig. 1–4

H(k,θ)= k2

4π2 f (k,θ) (5)

and for comparison itsθ -angle integrated version

H̄(k)=
1
2

∫ π

0
sin(θ)H(k,θ)dθ . (6)

In case of isotropyH(k,θ) will match H̄(k). Taking snapshots of these functions will allow us
to follow the isotropization of the initially anisotropic distribution and determine an estimate of
the time after which an isotropic plasma like answer of the electrons can be expected.

3. Results and discussion

We start from the initial distributions of Figs. 1-3 (a) and compute the dynamical evolution until
quasi-equilibrium is reached. Characteristic snapshots of the obtained distributionsH(k,θ) are
shown in parts (b), (c), and (d) of Figs. 1-3. Here, part (c) is taken at the inverse plasma fre-
quency – a characteristic timescale for a plasma – and (d) corresponds to a time where the final
isotropic equilibrium state is nearly reached. The time development ofH̄(k) is plotted in parts
(e). We notice that the quasi-discrete MPI structures are smeared out within the first 100f s. The
entire distributions relax on the order of picoseconds to nearly isotropic equilibrium distribu-
tions which have temperatures of 14000K for the lower intensity case Figs. 2 and 3 as well as
20000K for the higher one in Fig. 1, respectively.

For a more quantitative analysis of the relaxation dynamics and in order to extract the char-
acteristic relaxation times, we define the function

r(t) =

∫

dk sin(θ)dθ |H(k,θ , t)−H(k,θ ,equilibrium)|
∫

dk sin(θ)dθ |H(k,θ , t = 0)−H(k,θ ,equilibrium)| (7)
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Fig. 4. Relaxation times calculated fromH(k,θ) (a), the calculated anisotropy (b) and the
averagekz momentum (c) for the ionization conditions: 400nm pulse with 3 cycles and
I = 5×1013W/cm2 (solid, red) as well asI = 1×1014W/cm2 (dashed dotted, black) and
a 400nm pulse 6 cycles pulse of intensity 5×1013W/cm2 (dotted, blue). The time is given
in units of 1/fpl , i.e. 0.718ps (red), 0.240ps (black) and 0.400ps (blue). The short-time
relaxation dynamics happens in the regime below 1/fpl . The gray lines are exponential fits
to the long-time dynamics.

which shows the deviation of the time dependent distribution from the corresponding final
Fermi-Dirac distribution. Furthermore, we introduce

i(t) =

∫

dk sin(θ)dθ |H(k,θ , t)− H̄(k, t)|
∫

dk sin(θ)dθ |H(k,θ , t = 0)− H̄(k, t = 0)| (8)

which as the difference of the time dependent distribution and the corresponding angle aver-
aged isotropic distribution allows for the measurement of the anisotropy of the photoionized
electrons. Within a time interval where the real dynamics can be approximated by a relaxation
time approach both functions will show a line in a log plot with slope 1/τ.

Figure 4 shows (a) the relaxation timer(t), (b) the anisotropy i(t) and (c) the averagekz

momentum for the initial conditions of Fig. 1-3. In all cases, we show the time in units of
the inverse plasma frequency 1/fpl = 2π [Neq2

e/(meε0)]
−1/2. Assuming that 1/fpl defines the

characteristic timescale this scaling transforms the relaxation dynamics to a similar time frame.
Analyzing the results, we note that the relaxation dynamics can be divided into two part. At
the beginning the significant features of the ionization probability are smeared out and the
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major part of the anisotropy is removed (striped areas in Fig. 4). In other words, the short term
dynamicsis dominated by the loss of anisotropy which obviously cannot be approximated by
a simple relaxation time model (cp. Fig. 4a). This anisotropy indicates that the electrons are
not yet in a plasma state which should be measurable, e.g., in THz experiments. The relaxation
to a totally isotropic static equilibrium distribution happens on the much longer time-sale of a
few picoseconds. In case of the ionization with the 3-cycle pulse, the dominating part of this
long time dynamics is the decrease of the averagekz momentum. This process – governed by
the electron-ion scattering – shows a similar linear dependence in the log plots of Fig. 4, i.e.,
in (a) τ = 6.76/fpl (red),τ = 6.06/fpl (black) andτ = 5.3/ fpl (blue), (b)τ = 8.17/fpl (red),
τ = 6.63/fpl (black), or in (c)τ = 9.15/fpl (red),τ = 6.76/fpl (black) andτ = 6.87/fpl (blue).
A value for the blue line in (b) cannot be extracted. Generally, we see that the inverse plasma
frequency indeed yields a rough estimate for the scaling of the time evolution.

4. Conclusion

In summary, our investigations clearly show that the high-intensity short-pulse ionization of
atoms leads to highly anisotropic electron distributions. Our quantum Boltzmann analysis al-
lows us to identify two characteristic dynamical regimes during which the initial nonequilib-
rium distribution approaches a quasi-equilibrum plasma state. Due to the elastic and inelastic
Coulomb scattering the electrons relax in a first step towards a hot nonequilibrium isotropic
distribution. This is followed in a second step by a slower relaxation towards a Boltzmann dis-
tribution which is then indicative of a quasi-equilibrium, fully isotropic plasma state. An open
remaining question is how general electromagnetic fields (optical, THz, etc.) couple to these
nonequilibrium, initially anisotropic photoionized electron distributions.
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