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We apply a numerical-basis-state method to study dynamical processes in the interaction of atoms with strong
laser pulses. The method is based on the numerical representation of finite-space energy eigenstates of the
field-free atomic Hamiltonian in a box on a grid and the expansion of the solution of the full time-dependent
Schrödinger equation, including the interaction with the field, in this numerical basis. We apply the method to the
hydrogen atom and present results for excitation and ionization probabilities as well as photoelectron momentum
distributions. Convergence of the results with respect to the size of the basis as well as the parallel efficiency of the
numerical algorithm is studied. The results of the numerical-basis-state method are in good agreement with those
of two-dimensional numerical grid calculations. The computation times for the numerical-basis-state method
usually are found to be significantly smaller than those for the two-dimensional grid calculations, whereas, even
higher excited states can be well represented. We further apply this method to study a few recently reported
phenomena related to strong-field excitation of atoms, such as the dependence of the excitation probabilities on
the carrier-envelope phase in ultrashort pulses as well as the so-called frustrated ionization.
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I. INTRODUCTION

The progress in the development of intense laser systems
is one of the reasons for the continuous research of the
response of matter to an external electromagnetic field. Many
novel aspects of light-matter interaction at the atomic and
molecular levels have been discovered over the last few
decades, e.g., above-threshold ionization [1], higher-order har-
monic generation [2], or laser-induced tunneling [3,4]. Recent
advances in laser technology extended the wavelength regime
for ultrashort intense pulse generation significantly, which now
spans from the extreme ultraviolet to the mid-infrared. At the
same time, pulse durations decreased below the femtosecond
(1 fs = 1 × 10−15 s) barrier. Ionization and excitation are an
essential part of many laser-induced phenomena, including
the recent observations of highly excited states by frustrated
tunneling ionization [5], the enhanced emission of low-energy
electrons at mid-infrared laser wavelengths [6], oscillatory
patterns in the near-threshold electron angular distributions
[7,8], multiple ionization events within one half-cycle of the
laser electric field [9], or time-resolved holography [10].

In view of these activities, the development and appli-
cation of different complementary theoretical methods for
the analysis of laser-driven nonlinear processes in atoms
and molecules is of great interest. Current approaches in-
clude, among others, approximative but powerful multiphoton
and tunneling ionization formulas [11–14], nonperturbative
Floquet methods [15,16], the time-dependent Hartree-Fock
method [17], semiclassical approximation methods [18],
classical-trajectory Monte Carlo simulations [19,20], as well
as ab initio numerical methods to solve the time-dependent
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Schrödinger equation (TDSE) either on a large space-time
grid [21–23] or via expansion into basis sets [24,25]. Solutions
based on analytical-basis sets, e.g., Slater-type orbitals [26],
Gaussian orbitals [27], or B splines [28], have a long tradition
in atomic and molecular physics as well as chemistry.

In electronic structure and materials calculations, there has
been a recent upsurge in using numerical-basis sets [29,30]
as an alternative to analytical-basis sets. Systematic studies
concerning a comparison of the methods are rather scarce.
However, it appears that calculations using numerical-basis
sets may offer some advantages, e.g., in terms of computation
efficiency, over analytical-basis sets (in particular, Gaussian-
basis sets) in obtaining the geometries and binding energies of
large molecular systems [31,32]. In view of this development,
the question arises if a numerical-basis-state method can be
applied with sufficient accuracy and reasonable computational
effort to dynamical processes in a strong field, such as laser-
induced excitation and ionization of atoms or molecules.

In this article, we investigate the feasibility of us-
ing numerical-basis states to solve the time-dependent
Schrödinger equation in strong-field physics problems. To this
end, we numerically obtain finite-space energy eigenstates for
the hydrogen atom in a box [33,34], represent the numerical-
basis set on a grid, and propagate the system under the
influence of an intense laser pulse. As examples, we calculate
the transition probabilities to excited bound states and into the
continuum as well as electron momentum spectra. In order
to test the method, laser parameters, such as wavelength,
intensity, pulse length, and carrier-envelope phase (CEP) are
varied. The results of the numerical-basis-state method are in
good agreement with results obtained by propagating the wave
function on a space-time grid.

The rest of the paper is organized as follows. In Sec. II,
we introduce the numerical-basis-state method as well as the
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numerical techniques used to propagate the wave function
and to obtain excitation and ionization probabilities as well
as momentum spectra. Next, in Sec. III, we discuss some
aspects of the implementation, such as the basis size as well
as the efficiency of a parallelization of the computer code. We
further present comparisons of the results obtained with the
numerical-basis-state method with those from space-time grid
calculations. The numerical-basis-state method is then applied
to an analysis of different phenomena related to the excitation
of an atom in short intense laser pulses in Sec. IV. The paper
ends with a summary.

II. SOLUTION OF TDSE USING NUMERICAL-BASIS
STATES

In this section, we first obtain finite-space energy eigen-
states for the hydrogen atom in a box by solving the eigenvalue
problem of the field-free atomic Hamiltonian. To solve the
TDSE for the atom interacting with a laser pulse, we represent
the basis states on a grid and expand the full solution of the
TDSE in the basis. The propagation of the solution under the
influence of a short laser pulse requires the solution of a set of
linear equations for the expansion coefficients, which gives us
direct access to certain observables as well. We have chosen to
study the interaction of the hydrogen atom with the field since
a comparison with ab initio space-time grid calculations can be
performed without approximating electron correlation effects
via an effective potential. It is, however, straightforward to
extend the numerical-basis method to other atoms within the
single-active electron approximation.

A. Numerical-basis states

Functions of numerical-basis sets are written, as in the
case of analytical-basis sets, as products of a radial wave
function and the appropriate spherical harmonic ψn,l,m(r) =
Rnl(r)Ylm(�). The radial functions are generated as solutions
of the radial Schrödinger equation (Hartree atomic units
e = m = h̄ = 1 are used unless mentioned otherwise),[

−1

2

d2

dr2
− 1

r
+ Veff(r,l)

]
unl(r) = Enlunl(r), (1)

where unl(r) = rRnl(r) and Veff(r,l) = l(l + 1)/(2r2) is an
effective potential corresponding to the orbital angular mo-
mentum quantum number l. The eigenvalue equation (1) is
solved on a one-dimensional finite-space grid with a boundary
condition, using the Numerov method. In principle, any
boundary condition could be adopted here. We use the most
common one, namely,

unl(0) = unl(R0) = 0, (2)

where R0 is the outer boundary of the grid.
Usually, R0 is chosen to be large enough such that the

numerical solutions for a significant number of bound states
agree (within numerical errors) with the exact analytical
solutions, in case the latter are available. Therefore, the
energetically lowest n0 eigenstates in the numerical-basis set
can be considered as (numerically) exact eigenstates of the
system. On the other hand, the boundary condition (2) leads to
a selection of those continuum states of the original problem,

which have a node at R0, and, hence, to a discretization of
the continuum [35]. The density of states in the discretized
continuum is determined via the extension of the grid R0. The
number of states in the continuum is, in practice, limited by
the grid separation, which effectively determines the largest
frequency of the oscillating continuum states. Due to the
discretization, the continuum states can also be indexed by the
discrete principal quantum numbers n. The number of nodes of
bound and continuum states is given by n − l − 1, and all states
are orthogonalized using the Gram-Schmidt method. Thus, in
general, the bound and continuum states form a complete basis
set. In the course of computations, the number of continuum
states is usually further limited by practical reasons and/or the
concrete problem.

The discretization of the continuum via a boundary con-
dition is widely used in the solution of the TDSE with
analytical-basis sets as well, e.g., using B splines [28]. In
contrast to the analytical-basis-state methods, we do not
proceed by approximating the numerical solution (often, in a
subspace) by analytical functions but use the numerical values
on the radial grid points directly. To this end, the grid points
can be equally distributed, or a higher concentration of grid
points near the nucleus can be used. We have used a square
grid with a higher concentration of grid points near the nucleus,
i.e., ri = i2R0/N

2. Furthermore, in the present application of
the method, the outer boundary (R0) and the total number of
grid points (N ) are chosen to be adaptive for different n and
l. Larger R0 and N are chosen for larger n and l. This kind of
numerical-basis set has been used before to calculate atomic
photoabsorption spectra for highly excited states as well as
continuum states [33,34]. These previous results indicate that
the atomic energy levels and dipole transition matrix elements
can be well reproduced using the numerical-basis set.

B. Propagation of the wave function

In order to solve the TDSE for the hydrogen atom
interacting with an intense laser pulse, we use a standard
technique. The three-dimensional TDSE is given by

i
∂�(r,t)

∂t
= H (r,t)�(r,t), (3)

with

H (r,t) = −1

2
∇2 − 1

r
− E(t) · r, (4)

as the Hamiltonian in dipole approximation using a length
gauge. The time-dependent wave packet is then expanded in
the finite-space energy eigenstates as

�(r,t) =
∑
n,l,m

cnlm(t)ψnlm(r). (5)

Substituting Eq. (5) into Eq. (3), one obtains the TDSE in a
vector-matrix form

i
∂C(t)

∂t
= H(t)C(t), (6)

where the elements of vector C(t) are expansion coefficients
cnlm(t) and the elements of Hamiltonian matrix H(t) are
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given by

hn′l′m′,nlm(t) =
∫

ψ∗
n′l′m′(r)H (r,t)ψnlm(r)d r. (7)

The Hamiltonian matrix is block tridiagonal due to the
dipole selection rule for the angular momentum (l′ = l ± 1).
Integrating the TDSE (6) and calculating the propagator using
the Crank-Nicolson approximation, we obtain a set of linear
equations, [

I + i
�t

2
H

(
t + �t

2

)]
C(t + �t)

=
[

I − i
�t

2
H

(
t + �t

2

)]
C(t), (8)

where �t is the time step of propagation.
The formalism up to now holds for any kind of polarization

of the electric field (i.e., linear, circular, or elliptical). Specifi-
cally, for linear polarization in the z direction, the electric field
of a laser pulse can be written as

E(t) = E0 sin2

(
πt

T0

)
sin(ωt + φ), (9)

where E0 is the field strength, T0 is the time duration of the
pulse, ω is the field frequency, and φ is the CEP. Furthermore,
in this case, the dipole selection rule m′ = m restricts the basis
set in m to those functions having the same azimuthal quantum
number as the initial state (m = 0 for the ground state of the
hydrogen atom). We will, therefore, drop the index m below.

We solve the set of equations (8) using the portable
extensible toolkit for scientific computation (PETSC) library
[36], which is a widely used parallel code for solving linear
systems based on Krylov subspace iteration methods [37]. It
is known that the Krylov method provides high efficiency for
problems with a sparse matrix as in our case. The parallel
scheme we implemented is straightforward and is based
on the message passing interface. The vector-matrix objects
are distributed to different memories, and the vector-matrix
options are parallel computed by different processors. In
Sec. III B, we present results of tests concerning the parallel
efficiency of the code.

C. Observables

Observables, such as transition probabilities, energy, or
momentum spectra, can be calculated based on the field-
free-basis representation at the end of the laser pulse as
well as at time instants when the laser electric field is zero.
As mentioned above, the numerical-basis functions for the
energetically lowest bound states represent the (numerically)
exact solutions of the system. Therefore, the absolute square
of the corresponding expansion coefficients |cnlm(ti)|2 directly
represents the excitation probabilities for Enlm < 0, where
ti is a time instant when the laser electric field is zero.
Consequently, the total ionization probability is given by

Pion(ti) = 1 −
∑

En,l,m<0

|cnlm(ti)|2. (10)

The momentum distribution of the emitted photoelectron is
obtained by projecting the solution onto continuum Coulomb

wave functions (for m = 0),

P (k,θ ; ti) = 2

π

∣∣∣∣∣1

k

∑
l

ileiσl Yl(θ )
∑

n

cnl(ti)

×
∫

unl(r)u(c)
kl (r)dr

∣∣∣∣
2

, (11)

where u
(c)
kl (r) is the radial Coulomb wave functions corre-

sponding to momentum k and angular momentum l and σl =
arg[�(l + 1 − i/k)] is the Coulomb phase shift. The doubly
differential momentum distribution in cylindrical coordinates
is then calculated by

dP

dkρdkz

= 2πkρP (k,θ ). (12)

The related energy spectrum can be obtained from the
momentum distribution by using the relationship E = k2/2.

III. ASPECTS OF THE IMPLEMENTATION

In this section, we present results of a number of test
runs in which we analyzed the results as a function of basis
size and the efficiency of a parallelization of the computer
code. Furthermore, for a few exemplary cases, we present a
comparison between the results obtained using the numerical-
basis set and those from ab initio numerical simulations on a
space-time grid.

A. Basis size

The basis size is determined by the maximum angular
momentum (lmax) and the maximum principal quantum num-
ber (nmax) chosen in an actual run. We note that, due to the
discretization of the continuum, all states can be indexed by
n. Thus, the maximum principal quantum nmax corresponds
to a maximum (usually, positive) energy of the electron. The
time step for the propagation of the solution �t = 0.05 was
fixed in our calculations. The outer boundary (R0) and the
total number (N ) of the radial grids are chosen adaptively for
different n and l and vary from 30 to 1000 and from 480
to 16 200, respectively. The number of bound (Enl < 0) and
continuum (Enl > 0) states as well as the total number of basis
functions are determined by lmax, nmax, and R0. For a grid size
of R0 = 1000, bound states up to n = 20 are well represented
on the grid. We have varied the basis size parameters up to
lmax = 50 and nmax = 500, which results in a total number of
numerical-basis set functions of up to about 24 200. In Table I,

TABLE I. Absolute errors of some states (n,l) of the numerical-
basis set with respect to the exact analytical energies En = −1/2n2

(second column) for the hydrogen atom.

n En l = 0 l = 1 l = 9

1 −5.00 × 10−1 +2.0 × 10−8

2 −1.25 × 10−1 +2.0 × 10−8 +0.0 × 10−10

5 −2.00 × 10−2 +8.0 × 10−9 +5.0 × 10−9

10 −5.00 × 10−3 +2.3 × 10−9 +1.9 × 10−9 +0.0 × 10−10

15 −2.22 × 10−3 +7.2 × 10−10 +6.2 × 10−10 +1.2 × 10−10

20 −1.25 × 10−3 +3.8 × 10−8 +3.6 × 10−8 +4.2 × 10−9
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FIG. 1. Squares: Excitation probabilities to the (a) and (b) second,
(c) and (d) fourth, and (e) and (f) 20th excited states of a hydrogen
atom in a two-cycle laser pulse at a wavelength of 800 nm, a peak
intensity of 1 × 1014 W/cm2, and a carrier-envelope phase of φ = 0.
Panels on the left show the results as a function of lmax (with nmax =
500), and those on right show the results as a function of nmax (with
lmax = 50). The convergence of the results is shown on a relative scale
(main figure, ±10% of the respective final result) and on an absolute
scale (insets, ±1% of the largest excitation probability).

we present the absolute error of the energies of some states of
the numerical-basis set, calculated using the largest basis set,
with respect to the analytical known energies for the hydrogen
atom. An excellent agreement is found.

In Fig. 1, we present probabilities for excitation of the
hydrogen atom to the (a) and (b) second, (c) and (d) fourth,
and (e) and (f) 20th excited states as functions of lmax (with
nmax = 500, left column) and nmax (with lmax = 50, right
column). The excitation probabilities for the nth state are
summed up over l = 0 to l = n − 1. The results are shown
on two scales, namely, within ±10% of the final result for
the present excited state (main figure, relative error) and in
the insets within ±1% of the largest excitation probability
(i.e., P4, ± 2.23 × 10−6, absolute error). In the corresponding
calculations, we considered a two-cycle pulse at 800 nm, a peak
intensity of 1 × 1014 W/cm2, and a carrier-envelope phase of
φ = 0.

The convergence of the results for the excitation probabil-
ities is clearly seen. In particular, the convergence to a rather
small absolute error shows the reliability of the method. As
one would expect, the size of the basis with respect to lmax

has to be larger for the higher excited states. In further test
calculations, we have found that the trend shown in Fig. 1
holds for other field parameters as well. However, the relative
and absolute errors increase with an increase in the wavelength,
the peak intensity, and/or the pulse duration. These findings

FIG. 2. (Color online) (a) Speedup factor and (b) parallel effi-
ciency as a function of the number of processors p. Laser parameters
are the same as in Fig. 1. The red dashed line indicates the ideal linear
speedup.

qualitatively agree with common expectations for these kinds
of basis set calculations in which the basis size needs to be
adjusted in view of the problem of interest.

B. Parallel processing efficiency

As mentioned in Sec. III B, we implemented the numerical-
basis-state method in a parallel processing code. In Fig. 2, we
report test results of our investigations of the parallel efficiency.
To this end, we determined the speedup factor, defined as

Sp = T1

Tp

, (13)

where T1 and Tp were the computational times with a single
processor and p processors, respectively, and the parallel
efficiency given by

Ep = Sp

p
= T1

pTp

. (14)

The actual speedup [Fig. 2(a)] is not far from the ideal linear
case. Although the parallel efficiency [Fig. 2(b)] first slightly
drops as the number of processors increases, it appears that
the efficiency converges to about 80% for a larger number of
processors used. In particular, the parallel efficiency Ep does
not drop as 1/ ln(p) as in the case of algorithms, which are
hard to parallelize.

C. Comparison with results of grid calculations

In order to further test the numerical-basis-state method,
we also numerically solved the TDSE for the hydrogen atom
interacting with a linearly polarized laser pulse on a spatial
grid directly. Due to rotational symmetry over the polarization
axis (chosen here as the z axis), the Hamiltonian of the system
in dipole approximation using a length gauge can be expressed
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TABLE II. Excited-state probabilities (multiplied by 10−4) as a
function of principal quantum number n. An 800-nm laser pulse with
a peak intensity of 1 × 1014 W/cm2 is used. Number of cycles (nc)
and CEP (φ) are nc = 2 and φ = π /2, respectively.

n Basis-state method Grid method

2 0.63 0.68
3 0.27 0.28
4 0.11 0.11
5 1.08 1.12
6 1.83 1.82
7 1.23 1.26
8 0.81 0.83
9 0.56 0.57
10 0.40 0.41

in cylindrical coordinates as

H (ρ,z,t) = p2
z

2
+ p2

ρ

2
− 1√

ρ2 + z2 + a2
− zE(t), (15)

where z,ρ and pz,pρ are the coordinates and corresponding
momenta of the electron parallel and perpendicular to the
polarization direction of the laser. a2 = 0.001 is a soft-core
Coulomb parameter, and E(t) is the electric field. The wave
function of the initial (ground) state was obtained by imaginary
time propagation without the field. We used the Crank-
Nicolson method for the time propagation of a wave packet and
a three-point differential formula to discretize the Laplacian
on the spatial grid. Spatial steps of �ρ = �z = 0.1 a.u. and a
time step of �t = 0.03 a.u. were used in the calculations.
In order to represent well the spatial distributions of the
excited-state wave functions up to n = 10, a grid with 2000
points in the ρ direction and 4000 points in the z direction was
used for the wave-packet propagation in the presence of the
laser field. Energies of the ground and excited states depend on
the grid parameters as well as the soft-core parameter a. For
the parameters in the present calculations, the relative errors
of the energies with respect to the analytical results are up to
2 × 10−4, and, hence, about 4 orders of magnitude larger than
in the present numerical-basis-state approach. Mask functions
were used at the boundary of the grid to absorb the outgoing
wave packet. The excited-state probabilities (up to n = 10)
are calculated by projecting the wave packet to field-free
eigenstates at the end of the pulse.

In Tables II and III, we compare the excitation probabilities
calculated by the numerical-basis-state method and the space-
time grid method as a function of the principal quantum
number n (summed over l = 0, . . . ,n − 1) for a two-cycle
(Table II) and a ten-cycle (Table III) pulse at 800 nm,
1 × 1014 W/cm2, and φ = π/2. For the shorter pulse length,
the results agree well with each other, and the discrepancy is
even well within the error margins found for the present basis
set calculations (see Fig. 1). The results for the longer pulses
show, however, that this difference between the numerical-
basis state and the space-time grid results increases for longer
pulses. As mentioned above, the relative errors for the excited-
state energies are considerably larger in the space-time grid
method than for the numerical-basis-state method at present
parameters. Consequently, transition amplitudes differ in the

TABLE III. Excited-state probabilities (multiplied by 10−3) as a
function of principal quantum number n. Laser parameters are the
same as in Table II, except for nc = 10.

n Basis-state method Grid method

2 0.023 0.026
3 0.118 0.131
4 0.490 0.423
5 1.741 1.900
6 0.126 0.197
7 0.043 0.024
8 0.042 0.009
9 0.049 0.012
10 0.036 0.019

two methods, and the differences between the final excitation
probabilities increase with increases in the pulse length. By
varying the grid and soft-core parameters, we have checked
that the discrepancies in Table III can be well explained by
the above-described inaccuracies in the two-dimensional (2D)
grid method. Despite the discrepancies, the major features
(e.g., maximum population at n = 5 and minor population
for n > 6) are confirmed in both methods, whose physical
mechanism is discussed in Sec. IV. Since the convergence of
the results within the present numerical-basis-state method is
demonstrated in Table I and Fig. 1, we refrained from further
improving on the numerical error within the 2D grid method,
which would result in a significant increase in computation
time for a method outside the focus of the present paper.

In general, we note that the computational effort to obtain
accurate values for the probabilities in the highly excited states
using the numerical-basis-state method is considerably less
than that using the 2D grid method. This is partially due
to the fact that the required number of numerical-basis-state
functions (about 2.4 × 104 in the present calculations) is much
smaller than the required number of points (2000 × 4000 =
8 × 106) in the present 2D grid calculations. Despite the fact
that the total number of points in the 2D grid calculations
is much larger than in the numerical-basis-state method, the
2D grid has smaller extensions (zmax = 200 vs R0 = 1000).
Therefore, much higher excited states (up to n = 20, see
Fig. 1) are well represented in the numerical-basis states. To
cover the same number of excited states in the 2D grid cal-
culations would require a large increase in the computational
costs.

Next, we consider ionization and the differential mo-
mentum distributions of the photoelectron. For this set of
calculations, a larger numerical-basis set with lmax = 50 and
nmax = 600 is used in order to cover the continuum states
up to k = 1.5 a.u. In Fig. 3, we present the momentum
distributions as a function the momentum components parallel
(kz) and perpendicular (kρ) to the polarization direction of
the linearly polarized field at 5 × 1013 W/cm2 (upper row)
and 1 × 1014 W/cm2 (lower row) at 800 nm and φ = 0 in a
six-cycle pulse. The results obtained with the numerical-basis-
state method are shown on the left, whereas, the panels on the
right present the 2D grid results.

The results agree very well and show the expected
ring structures, which correspond to the multiphoton
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FIG. 3. (Color online) Comparison of differential momentum
distributions of the photoelectron (on a logarithmic scale) induced
by laser pulses (φ = 0) with 800 nm, six cycles, [(a) and (b)]
5 × 1013 W/cm2 and [(c) and (d)] 1 × 1014 W/cm2, using left
column: the basis-state method and right column: the 2D grid method.

above-threshold ionization process. Both results also show
the typical radial fanlike pattern and the node structure in the
angular distribution, which has been observed in experiments
[7,38] and previous theoretical papers [8,39]. Results of the
test calculations indicate that, for the current basis-state and
grid parameters, the small differences in the distributions at
larger momenta are caused by the 2D grid calculations. Similar
agreement between the results of the two methods has been
found at other laser parameters, for example, the asymmetry
in the photoelectron momentum distributions in few-cycle
pulses as a function of the carrier-envelope phase could be
well reproduced (e.g., Ref. [40]).

IV. EXCITED-STATE POPULATION IN ULTRASHORT
LASER PULSES

We have further applied the numerical-basis-state method
to investigate several phenomena regarding the population
in excited states recently reported in the literature. First, it
has been found that, in ultrashort few-cycle laser pulses, the
population in bound states does depend on the CEP of the
pulse [41,42]. This effect is further investigated in the results
shown in Fig. 4 where we present the excited-state probabilities
as a function of the principal quantum number n (summed over
l = 0, . . . ,n − 1) for laser pulses with (a) two, (b) five, and
(c) ten cycles at 800 nm and 1 × 1014 W/cm2 and different
carrier-envelope phases (open circles: φ = 0, solid squares:
φ = π/4, and hatched diamonds: φ = π/2). The number of
cycles (nc) accounts for the full duration of the laser pulse. For
the ten-cycle pulse, the distribution is strongly peaked with the
maximum at n = 5 independent of the value of the CEP, which
is probably due to multiphoton resonant absorption. However,
at shorter pulses, the distribution smears out more and more,
and maxima at different n appear, which clearly shows the
strong dependence of the excited-state population on the CEP
of the few-cycle pulse.

We have further computed the corresponding distributions
over the angular quantum number l for the n = 5 state at
800 nm, 1 × 1014 W/cm2, and φ = π/4. The results in Fig. 5
show strong dependence of the distribution on the number
of cycles in the pulses. For the longest [ten-cycle, panel
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FIG. 4. (Color online) Excited-state probabilities as a function
of principal quantum number n. An 800-nm laser pulse with a peak
intensity of 1 × 1014 W/cm2 is used. Number of cycles (nc) and CEP
(φ), respectively, are as follows: (a) nc = 2; (b) nc = 5; (c) nc = 10;
black solid line with open circles: φ = 0; red dashed line with solid
squares: φ = π/4; blue dashed-dotted line with hatched diamonds:
φ = π/2.

(c)] pulse considered in the present calculations, there is a
clear maximum at l = n − 1 = 4, indicating an even-number
photon process (due to �l = ±1 for long pulses). At five
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FIG. 5. Excited probabilities as a function of angular quantum
number l in the n = 5 state. An 800-nm laser pulse with a peak
intensity of 1 × 1014 W/cm2 and φ = π/4 is used. Number of cycles:
(a) nc = 2, (b) nc = 5, and (c) nc = 10.
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FIG. 6. Time-dependent excitation and ionization probabilities.
An 800-nm laser pulse with a peak intensity of 1 × 1014 W/cm2 and
φ = π/2 is used. Number of cycles: left: nc = 5; right: nc = 10.
First row: n = 1, second row: total excitation, and third row: total
ionization.

cycles [panel (b)], the population is more broadly distributed,
however, the probabilities in the even-l states (l = 0,2,4) are
clearly larger than those in the odd-l states (l = 1,3), which
is still in agreement with the conclusion of an even-number
photon resonant absorption for the n = 5 state. For the shortest
pulse, the population is distributed at the largest even- as well
as odd-l values, indicating that the resonant character of the
transition is lost.

The expansion in numerical-basis states also provides
access to the probabilities in the bound and continuum
states during the interaction whenever the electric field is
zero. This gives further information into the excitation and
ionization dynamics during the pulse. In Fig. 6, we present
the probabilities to find the hydrogen atom in its ground
state (upper row), in the excited bound states (second row),
and in the continuum states (lower row) as a function of
time for five- (left-hand side) and ten-cycle (right-hand side)
pulses at 800 nm, 1 × 1014 W/cm2, and φ = π/2. We observe
that the total excitation probability is built up over the raise
of the pulse and is largest at the peak of the pulse, whereas,
in the back of the pulse, this population is partially transferred
back to the ground state. The ionization probability increases,
as one would expect, during the front part of the pulse up
to the peak, after which, it remains almost constant. Further
analysis (Fig. 7) indicates that, during the front part of the
pulse, mainly the lowest excited states (in particular, n = 2)
are strongly populated, whereas, the population in the higher
excited states (e.g., n = 5) increases during the interaction at
the back part of the pulse.

In order to further investigate the excitation and ionization
dynamics, we performed another set of calculations in which
we shaped either the front or the back part of the pulse. To this
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FIG. 7. Time-dependent excitation probabilities in upper row:
n = 2 and lower row: n = 5. An 800-nm laser pulse with a peak
intensity of 1 × 1014 W/cm2 and φ = π/2 is used. Number of cycles:
left: nc = 5; right: nc = 10.

end, we considered the following laser electric fields:

Ek,j (t) = E0 sin(ωt + φ)

{
sin2k

(
πt
T0

)
: 0 � t � T0

2 ,

sin2j
(

πt
T0

)
: T0

2 < t � T0,
(16)

where an increase in the parameter k (j ) indicates an increas-
ingly steepened front (back) edge of the pulse. The correspond-
ing results in Fig. 8 show that the excitation probability for
the sin2 pulse and the steepened front-shaped pulse virtually
agree over the back part of the pulse, which is in agreement
with dominant resonant multiphoton transitions at rather weak
electric fields. On the other hand, for the pulse with a steep back
part, the final excitation probability is slightly larger since the

FIG. 8. (Color online) (a) Ground state, (b) excitation, and
(c) ionization probability as a function of time. Black solid line:
sin2-shaped pulse; red dashed line: front-shaped pulse (k = 8, j =
1); blue dotted line: back-shaped pulse (k = 1, j = 8). The number
of cycles was nc = 20, whereas, other laser parameters are the same
as in Fig. 4.
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FIG. 9. Excited-state probabilities as a function of principal
quantum number n for interaction of the hydrogen atom with an
800-nm laser pulse with a peak intensity of 1 × 1014 W/cm2 and
(a) 10 cycles and (b) 20 cycles of field oscillation.

population transfer from the lowest excited states to the ground
state is strongly altered. The final ionization probabilities due
to the interaction with the shaped pulses are smaller than for
the sin2 pulse but do agree well with each other. This supports
the interpretation that the final ionization probability strongly
depends on transition into the continuum at the largest field
strength near the peak of the pulse.

Finally, we studied the population in highly excited bound
states with respect to the recently reported phenomenon
called frustrated ionization [5]. It specifies the experimental
observation that, in a laser field at laser intensities well in
the so-called tunneling regime, the electron may be left in
highly excited states. This observation has been explained
by a deacceleration of the electron over many laser cycles
and a recapturing of the electron once the laser pulse ceases.
While frustrated ionization has first been observed for a single
ionization of atoms [5], similar effects have recently been
reported for the dissociation of molecules [43–45] and the
nonsequential double ionization of atoms [46].

According to the present interpretation of the effect, the
population in the highly excited states should occur in long
pulses only. We have, therefore, performed simulations using
the numerical-basis-state method for the interaction of a
hydrogen atom with laser pulses of 10 and 20 cycles at an
intensity of 1 × 1014 W/cm2 and a wavelength of 800 nm.
The results, presented in Fig. 9, clearly show a much stronger

population of the states with n � 7 for the longer pulse length
in agreement with the expectation for a frustrated ionization
effect. These results are also in qualitative agreement with the
first experimental observations of the effect for the helium
atom [5]. In contrast, the maximum in the excited-state
population at n = 5 occurs independent of the length of the
pulse (see also, Fig. 4) and is likely due to a resonance
phenomenon.

V. SUMMARY

We have developed a numerical-basis-state method for
the interaction of single-active electron systems with intense
laser pulses. The method is based on the representation of
numerical solutions of the unperturbed system on a grid,
which, in the case of an atomic system, can be chosen to
be one dimensional along the radial direction. The solutions
form a numerical-basis set of bound and continuum states of
the system. For the interaction with the external field, the
time-dependent solution of the corresponding Schrödinger
equation is expanded in the numerical-basis set, and the
expansion coefficients are obtained via a set of linear equations
during the propagation.

We have applied the method to the interaction of the
hydrogen atom with short intense laser pulses and have
obtained excitation and ionization probabilities as well as
momentum distributions of the photoelectron. Convergence
of the results as a function of the size of the basis set as
well as results for the parallel processing efficiency of the
numerical algorithm have been presented. We have further
shown that the results of the numerical-state method are in
good agreement with those obtained in two-dimensional grid
calculations. The comparison shows that computation times
within the numerical-basis-state method are often favorable as
compared to two-dimensional grid calculations. Furthermore,
in the numerical-basis-state method, it is possible to study
excitation for highly excited states, which is often associated
with high computational costs in a 2D grid calculation.

Finally, we have shown that phenomena, which have
recently been reported in the literature, can be well reproduced
with the present numerical-basis-state method. This includes
the dependence of the excitation probability in low-lying states
on the carrier-envelope phase in ultrashort laser pulses as
well as the phenomenon of frustrated ionization with strong
population of highly excited states in longer pulses.
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