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Time-resolved view on charge-resonance-enhanced ionization
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We theoretically investigate the electronic dynamics in the hydrogen molecular ion at fixed intermediate
internuclear distances in two-dimensional space for the electron in a linearly polarized laser field. Our results
of numerical simulations confirm the predictions of multiple bursts of ionization within a half cycle of the laser
field oscillation as recently reported for one-dimensional models. Based on the analysis of the Floquet states for
a two-state model of the molecular ion, we discuss the relation of the multiple ionization bursts to the so-called
charge-resonance-enhanced ionization phenomenon and the momentum gates.
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I. INTRODUCTION

Ionization of atoms and molecules is an important process
in strong-field physics. The free electron is detected with
discrete kinetic energies, which is known as above-threshold
ionization [1]. Ionization is also the initial step for many other
phenomena occurring in the interaction of matter with intense
laser pulses since the electron can be driven back to the
parent ion by the strong field. This leads to the generation
of higher-order harmonics [2] or the release of a second
electron, known as nonsequential double ionization [3]. Also,
the generation of attosecond pulses, which are used to image
and control the ultrafast electron dynamics in atoms and
molecules on its natural time scale [4,5], is related to an initial
ionization step.

The ionization process in intense laser fields has often
been understood by the quasistatic tunnel ionization picture.
In this popular picture the laser field is approximated as a
static electric field at each instant of time and the electron is
considered to quickly tunnel through (or leave over) the barrier
created by the combined potentials of the laser field and the
Coulomb attraction of the core. It leads to the expectation
that the ionization rate is at maximum whenever the barrier
becomes the thinnest (and lowest), which coincides at the
field maxima. This prediction is in agreement with recent
attosecond time-resolved observation for ionization of Ne+
[6]. Even in the case of nonadiabatic tunnel ionization, in which
the laser field is considered to change significantly while the
electron is escaping from the attractive potential of the core,
the ionization rate exhibits a single maximum during each
half-cycle of the laser field oscillation [7].

In contrast to these popular assumptions, our recent results
of numerical simulations on model systems of H2

+ interacting
with intense laser fields indicate that in this simplest molecule
there can be multiple bursts of ionization within a half
cycle of the laser field [8,9]. These bursts are related to a
transient electron localization at one of the protons on the
attosecond time scale [10,11]. The subcycle oscillation of the
electron density occurs in H2

+ after the molecular ion has
stretched to intermediate internuclear distances. It is due to
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a trapping of the electron population in a pair of so-called
charge-resonance (CR) states [12,13], which is, in our case,
the energetically lowest σg and σu states of H2

+. It is likely
that similar attosecond intramolecular electron dynamics and
related multiple ionization bursts (MIBs) appear in other
molecules with CR states as well.

Here we further explore this phenomenon in view of the
following aspects: First, in our previous investigations of
the MIBs in H2

+ [8,9], we employed models in which the
electronic motion is restricted along the electric field vector
of a linearly polarized laser field. Below we show that the
attosecond intramolecular electron dynamics and the MIBs are
not caused by this restriction. Results of numerical simulations
of the electron dynamics in two degrees of freedom confirm
our previous predictions. Second, we show how the MIBs are
related to the well-known mechanism of charge-resonance-
enhanced ionization (CREI) [14,15], in which the electron
is efficiently ionized from the uphill potential. To this end,
we analyze the dynamics in a two-state model (consisting of
the two CR states) using a series expansion of the Floquet
states [16]. We show that the first-order term of this expansion
represents the transient intramolecular electron transfer on
the sub-laser-cycle time scale. The ionization current of the
CREI process is modulated by this ultrafast electron transfer.
Furthermore, we elucidate in the Wigner representation that
this bunching of the ionization current from the upper hill is
regulated via the previously introduced concept of momentum
gates [11]. In this sense, the MIBs do not replace CREI, but
both phenomena coexist. The MIBs can be viewed as a refined,
time-resolved version of the CREI picture.

The rest of the paper is organized as follows. In Sec. II, we
present the results of numerical simulations using different
models of H2

+ in order to show that the sub-laser-cycle
electron dynamics in the molecular ion and the MIBs do not
depend on the details of the model used for the calculations.
We then introduce the two-state model and analyze it in terms
of the Floquet states in Sec. III. Finally, we show and discuss
in Sec. IV the relation of the MIBs to the well-known CREI
mechanism and the concept of momentum gates. The paper
ends with conclusions.

II. SUBCYCLE ELECTRON DYNAMICS IN H2
+

In our previous numerical simulations [8], we used two
different models of H2

+, in both of which the electronic motion
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was restricted along the polarization direction of the laser field.
Results for the temporal evolution of the electron densities
for the cases that the protons were either fixed in space or
allowed to move along the polarization direction were in very
good agreement with each other. We thus concluded that the
nonadiabatic coupling of the nuclear and electronic motions
is not essential for the formation of the MIBs. In this article,
we now investigate the influence of the transverse degree of
freedom on the localization of the electron at one of the two
protons and the MIBs.

A. Numerical models

We consider the electronic motion in a model for H2
+,

in which the two protons are aligned along the polarization
direction of linearly polarized laser light and their distance
is fixed at R0. The Hamiltonian of this system can be given
as (Hartree atomic units, e = m = h̄ = 1, are used throughout
the article, unless otherwise noted)

H (2D)(t) = −1

2

(
1

ρ

∂

∂ρ
ρ

∂

∂ρ
+ ∂2

∂z2

)

− 1√
ρ2 + (

z + R0
2

)2
− 1√

ρ2 + (
z − R0

2

)2
(1)

+ zE(t),

where ρ and z are the transverse and longitudinal coordinates
of the electron, respectively, and E(t) = −dA(t)/dt is the
laser electric field. The laser pulse was assumed to have a sin2

envelope for the vector potential,

A(t) = fA(t) sin (ωt + ϕ) , (2)

fA(t) =
{

A0 sin2
[
π

(
t + T

2

)
/T

]
: −T/2 � t � T/2,

0 ,otherwise.
(3)

The Hamiltonian operator in Eq. (1) was discretized
on the two-dimensional (2D) grid such that the resultant
Hamiltonian matrix is Hermitian and the wave function
propagator becomes unitary [17–19]. To this end, the grid
points in ρ were set with an offset of half an interval from
ρ = 0 as {�ρ/2,3�ρ/2, . . . ,(2Nρ − 1)�ρ/2}. In this way
any numerical instability due to the singularity of the Coulomb
potential in Eq. (1) at (ρ,z) = (0, ± R0/2) was avoided as well.
The internuclear distance R0 was fixed at 7. By distributing the
grid points over 0 < ρ < 15 and −40 < z < 40 at the intervals
of �ρ = 0.0375 and �z = 0.1, respectively, and setting the
time step as �t = 0.01, the ground and first excited states
were obtained by imaginary time propagation at the energies
of −0.648 and −0.639, respectively (not including the 1/R0

repulsion). The transition dipole moment between these two
states was dgu = 3.40.

To investigate the influence of the transverse degree of
freedom on the intramolecular electron dynamics, we also
obtained results from the previously used fixed-nuclei one-
dimensional (1D) model, in which the motion of the electron is
restricted along the polarization direction. The corresponding

Hamiltonian is given by

H (1D)(t) = −1

2

∂2

∂z2
− 1√(

z + R0
2

)2 + ae

− 1√(
z − R0

2

)2 + ae

+ zE(t), (4)

with the soft-core parameter ae = 1.0 [8]. The grid points were
chosen over −300 < z < 300 at the interval of �z = 0.0732,
and the time step of the wave function propagation was set
at �t = 0.0168. The ground- and first-excited-state energies
of this model were −0.823 and −0.810, respectively, and the
transition dipole moment was 3.36.

B. Time evolution of the electron density

For our exemplary comparison of the evolution of the
electron density, we prepared the system in the respective
ground state of the two models and propagated the wave
function under the same laser pulse of peak intensity I0 =
6 × 1013 W/cm2, wavelength λ = 800 nm, pulse duration of
10 cycles [full width at half maximum (FWHM)], and carrier-
to-envelope phase ϕ = π/2. The electron density obtained
using the two models are compared in Fig. 1 over the central
laser cycle at the peak of the laser pulse. The vector potential
and the electric field of the applied laser pulse are shown in
panel (d) for comparison.

Figures 1(a) and 1(b) show the electron densities in the 1D
and 2D models, respectively, on a logarithmic scale. For the
sake of comparison, the electron density |
(2D)(ρ,z,t)|2 in the
2D model was integrated over the transverse direction as

P (z,t ; ρd ) =
∫ ρd

0
dρ ρ|
(2D)(ρ,z,t)|2, (5)

with ρd = 0.5. As can be seen from the comparison, the time
evolution of the electron density in the 2D model exhibits

FIG. 1. (Color online) Time evolution of the electron density
along the molecular axis obtained by (a) 1D model and (b) 2D model
with R0 = 7 are plotted on logarithmic scale. Laser pulse of intensity
6 × 1013 W/cm2, wavelength 800 nm, and FWHM duration of 10
laser cycles were used. (c) The electron density in the 2D model
plotted on linear scale. (d) The vector potential A(t) (black solid line)
and the electric field E(t) (blue dashed line) of the laser pulse.
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qualitatively the same behavior as that in the 1D model. For
the present laser parameters there are two bursts of ionization
within a half cycle of the laser field as marked by A, B, A′,
and B ′ in Fig. 1(b). The subcycle transient electron localization
becomes even more obvious if the electron density is plotted
on a linear scale, as shown in Fig. 1(c) for the 2D model. The
results also confirm that it is the electron localization which
induces the MIBs. These major bursts are further divided into
finer fringes at |z| >≈ 8 due to interferences with the rescattering
wave packet, which was emitted in the previous half cycle and
now returns to the molecular core, as shown in Ref. [9]. Thus,
from this exemplary comparison we may conclude that the
subcycle intramolecular electron dynamics and the MIBs are
not a peculiarity of the previously used 1D model, but they
should be present in the actual 3D molecular ion as well.

III. TWO-STATE ANALYSIS

A. Localized states of charge-resonance pair

In order to further investigate the electron dynamics, we
make use of a simple two-state model in which just the two
energetically lowest states of H2

+ are considered. The ground
state, |g〉, and the first excited state, |u〉, of H2

+ at R0 = 7
are almost degenerate, and their superpositions form the states
localized at the respective protons,

|L〉 = 1√
2

(|g〉 + |u〉) , (6)

|R〉 = 1√
2

(|g〉 − |u〉) . (7)

Without loss of generality, we set the overall phases of 〈z|g〉
and 〈z|u〉 such that 〈z|L〉 and 〈z|R〉 are localized at z < 0
and z > 0, respectively. Conversely, the ground and first
excited states may be considered as gerade and ungerade
superpositions of these two localized states. Thus, when the
|g〉 and |u〉 are mixed under the influence of an external field,
the electron density can oscillate between the two protons,
giving rise to a large transition dipole moment between these
two states, dgu = 〈g|(−z)|u〉 ∼ R0/2, along the molecular axis
at large internuclear distance R0 [12,20,21]. Due to this strong
coupling, the population of the system is expected to be
essentially trapped within this pair of lowest CR states before
ionization.

We extracted the populations in the lowest CR states from
the solution |
〉 of the time-dependent Schrödinger equation
(TDSE) obtained by the numerical simulations by projection
to the localized states |L〉 and |R〉. Figure 2(b) shows the
normalized local populations

PL = |〈L|
〉|2
|〈L|
〉|2 + |〈R|
〉|2 , (8)

PR = |〈R|
〉|2
|〈L|
〉|2 + |〈R|
〉|2 , (9)

in the 2D model, whereas in Fig. 2(a) we present the same
quantities for the 1D model. The results clearly show the
transient electron localization seen in Fig. 1(c), and therefore
confirm that their origin can be analyzed in the two-state model
for the present laser parameters.
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FIG. 2. (Color online) Population analysis in the lowest CR pair.
(a) Normalized populations PL (blue solid line) and PR (red dashed
line) in the 1D model. (b) Same as in panel (a), except in 2D model.
(c) Same as panels (a) and (b), except that the populations are obtained
by Floquet analysis. (d) Vector potential (black solid line) and electric
field (blue dashed line) of the applied laser pulse.

B. Series expansion of Floquet states

By approximating the laser field as a cw field, the Floquet
states of the two-level system can be obtained in a form of a
series expansion [16,22,23]. Following the analysis in Ref. [16]
we write the Hamiltonian of the two-level system as

H (2lev)(t) = �0

2
[σuu − σgg] − dguE(t)[σgu + σug], (10)

where �0 > 0 is the energy difference between |u〉 and |g〉,
dgu = 〈g|(−z)|u〉 is the transition dipole matrix element, and
σij = |i〉〈j | (i,j ∈ {g,u}). The origin of the potential energy
is taken at the center of the energy levels of |g〉 and |u〉. We
assume a cw laser field whose vector potential is given as

A(t) = A0 sin(ωt + ϕ) + Ã, (11)

where Ã is an arbitrary constant defining the origin of the
vector potential whose value does not affect any observable.
The electric field is related to the vector potential as

E(t) = −dA(t)

dt
= −E0 cos(ωt + ϕ), (12)

where E0 = ωA0. By introducing a dimensionless time coor-
dinate,

τ := ωt + ϕ, (13)

the two-level TDSE can be written as

i
∂

∂τ
|
(2lev)(τ )〉 = H̄ (2lev)(τ )|
(2lev)(τ )〉, (14)

where H̄ (2lev)(τ ) = H (2lev)(t(τ ))/ω.
Due to the periodicity of the Hamiltonian H̄ (2lev)(τ ) =

H̄ (2lev)(τ + 2π ), according to the Floquet theorem, the TDSE
(14) has the following form of special solutions:∣∣
(2lev)

j (τ )
〉 = exp(−iεj τ )

∣∣ϕF
j (τ )

〉
, j = 1,2, (15)
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where the quasienergies {εj } and Floquet eigenvectors
{|ϕF

j (τ )〉} are the eigenvalues and eigenstates of the
Schrödinger operator,(

H̄ (2lev)(τ ) − i
∂

∂τ

) ∣∣ϕF
j (τ )

〉 = εj

∣∣ϕF
j (τ )

〉
. (16)

When the laser frequency ω is much larger than the
transition frequency �0 between |g〉 and |u〉 and/or the laser-
induced coupling is strong, the quasienergies can be expanded
as [16]

ε1 = −�0

2ω
J0(ζ )[1 + O(ε2)], (17)

ε2 = �0

2ω
J0(ζ )[1 + O(ε2)], (18)

where Jn(ζ ) represents the nth-order Bessel function of
the first kind, ζ = 2dguE0/ω = 2dguA0 is proportional
to the ratio of the Rabi frequency to the laser frequency, and the
perturbation parameter ε can be taken as either ε = �0/ω or
ε = �0/

√
ωdguE0. The corresponding Floquet states are then

given by (for a comprehensive derivation, please see Ref. [16])

∣∣ϕF
1 (τ )

〉 =
[

cos φ(τ ) + i
�0

ω
cos φ(τ )ξs(τ )

+ i
�0

ω
sin φ(τ )ξa(τ )

]
|g〉

+
[
i sin φ(τ ) + �0

ω
cos φ(τ )ξa(τ )

− �0

ω
sin φ(τ )ξs(τ )

]
|u〉 + O(ε2) (19)

and ∣∣ϕF
2 (τ )

〉 =
[
i sin φ(τ ) − �0

ω
cos φ(τ )ξa(τ )

+ �0

ω
sin φ(τ )ξs(τ )

]
|g〉

+
[

cos φ(τ ) − i
�0

ω
cos φ(τ )ξs(τ )

− i
�0

ω
sin φ(τ )ξa(τ )

]
|u〉 + O(ε2), (20)

where

φ(τ ) = −dgu[A(t(τ )) − Ã], (21)

ξs(τ ) =
∞∑

k=1

J2k(ζ )
sin[2kτ ]

2k
, (22)

ξa(τ ) =
∞∑

k=0

J2k+1(ζ )
cos[(2k + 1)τ ]

2k + 1
. (23)

For our present 2D model system, the perturbation param-
eters were either �0/ω = 0.164 or �0/

√
ωdguE0 = 0.105

in the laser field of wavelength 800 nm and intensity 6 ×
1013 W/cm2. In Fig. 3, we compare the quasienergies calcu-
lated from the series expansion formulas (17) and (18) with
the values obtained by numerically solving the eigenvalue
equation (16). The two results agree with each other very

well, indicating that the contributions of the terms beyond the
first-order term in the expansion are negligible.

C. Time evolution of local population

Before the emergence of the attosecond pulse technology,
the Floquet states were often used to analyze the laser-matter
interaction over many cycles in terms of the lifetime of
a metastable state [24–28] or the light-dressed electronic
potentials [29,30]. In contrast, we use the Floquet solutions
to investigate the dynamics of the system on a sub-laser-cycle
time scale. This analysis is valid if the electric field amplitude
E0 does not change significantly within one laser cycle.

The general solution of the two-state TDSE (14) can be
expressed as a superposition of the two special solutions in
Eq. (15), that is,

|
(2lev)(τ )〉 = c1 exp(−iε1τ )
∣∣ϕF

1 (τ )
〉

+ c2 exp(−iε2τ )
∣∣ϕF

2 (τ )
〉
, (24)

where the coefficients cj (j = 1,2) are constant in time.
Therefore, by projecting |
(2lev)(τ )〉 to |L〉 and |R〉, the time
evolution of the local populations are expressed as [using
Eqs. (19) and (20)]

|〈L|
(2lev)(τ )〉|2 = 1
2 |c1 + c2|2 + �P (1) + O(ε2), (25)

|〈R|
(2lev)(τ )〉|2 = 1
2 |c1 − c2|2 − �P (1) + O(ε2), (26)

where

�P (1) = �0

ω

{
(|c1|2 − |c2|2)ξa(τ )

− 2Im[c1c
∗
2]

(
1

2
J0(ζ )τ + ξs(τ )

) }
. (27)

The zeroth-order terms, |c1 ± c2|2/2, are constant in time,
and the sub-half-cycle electron transfer from one nucleus to
the other is represented by the higher-order terms. As shown
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FIG. 3. (Color online) Quasienergies ε1 and ε2 calculated by
numerically solving the eigenvalue Eq. (16) (black crosses) and from
the formulas (17) and (18) (solid and dashed lines, respectively). The
parameter values for the two-state model were taken from the 2D
model. The laser wavelength was set at 800 nm.
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above, for the present laser and molecular parameters, the local
population dynamics can be analyzed using the terms up to the
first order of the expansions.

The time instants at which either one of the local popu-
lations |〈L|
(2lev)(τ )〉|2 or |〈R|
(2lev)(τ )〉|2 is maximized are
given by the condition

d

dτ
�P (1) = 0. (28)

It can be shown that this is equivalent to

(|c1|2 − |c2|2) sin[2φ(τ )] − 2Im[c1c
∗
2] cos[2φ(τ )] = 0. (29)

The left-hand side of this equation can be written as
sin[2φ(τ ) + χ ], where

cos χ = |c1|2 − |c2|2
C

, (30)

sin χ = −2Im[c1c
∗
2]

C
, (31)

C =
√

(|c1|2 − |c2|2)2 + 4(Im[c1c
∗
2])2. (32)

Therefore, one of the local populations is maximized if
2φ(τ ) + χ is equal to an integer multiple of π . Using Eq. (21),
we thus obtain that the electron is maximally localized at a
proton at the time instants tloc given by

A(tloc) = mπ + χ

2dgu
+ Ã, with m ∈ Z. (33)

Furthermore, one can show that

d2�P (1)

dτ 2

∣∣∣∣
t=tloc

= (−1)m
C�0dgu

ω2
E(tloc). (34)

This indicates that for those tloc which correspond to odd m

the electron is localized at the proton which is lower in the
electric potential of the laser field.

These relations enable us to predict the timing of maximum
electron localization in terms of the vector potential A(t)
if the dipole transition matrix element dgu and the mixing angle
of the Floquet states χ are known. We have shown previously
how the value of χ can be determined experimentally by
probing the IR-laser-driven H2

+ with an attosecond XUV laser
pulse [8].

In Figs. 1(d) and 2(d), the vector potential A(tloc) and
the time instants of maximum localization, tloc, according to
Eq. (33), are indicated by the horizontal and vertical grid lines,
respectively. The parameters �0 and dgu of the two-state model
were set to those values of the 2D model. They correctly predict
the transient localization of the electron in Figs. 1(c) and 2(b).
For this prediction the value of χ was set to zero, which should
be a good approximation as long as a long laser pulse of more
than a few cycles duration is applied to the system prepared in
the ground state. Under this condition, the system evolves into
a single Floquet state |ϕF

1 (τ )〉 [31,32].
Figure 4 shows the transient population transfer between

|L〉 and |R〉 as given by the first-order terms of Eqs. (25) and
(26) in a single Floquet state (c1 = 1 and c2 = 0) as a function
of time and intensity. The results show that in a field of low
intensity there is just one maximum of the localization at the
peaks of the pulse [9]. On the other hand, in a more intense
laser field there can be more than two time instants per half

cycle at which the population localizes at one of the protons.
Furthermore, please note that the electron localizes at different
protons in different intensity regimes.

D. Static and subcycle electron localization

The expansions of the local populations in Eqs. (25) and
(26) indicate that there are two modes of electron localization.
One is the static localization represented by the zeroth-order
terms, |c1 ± c2|2/2, and the other is the subcycle transient
localization represented by the first-order terms, ±�P (1).

In the static localization, the electron densities at the two
protons may become asymmetric for more than one cycle of the
laser field. As the expression |c1 ± c2|2/2 suggests, this static
localization appears when the two Floquet states |ϕF

1 (τ )〉 and
|ϕF

2 (τ )〉 are superposed. Such a superposition can be created if
a laser pulse of rapidly increasing envelope is applied to H2

+
in one of the eigenstates, |g〉 or |u〉, or if the initial state of
H2

+ is prepared in a superposition of |g〉 and |u〉. This static
mode of electron localization has been shown to generate even
order harmonics [22,23,33] and also to contribute to enhanced
ionization [14].

If a laser pulse is longer than a few cycles, the field may be
well approximated as a cw field. Under this condition, the two
Floquet states belong to different irreducible representations
of the generalized parity symmetry [31,32]. As a result, if H2

+
was initially in the |g〉 (or |u〉) state, it evolves into the single
Floquet state |ϕF

1 (τ )〉 (|ϕF
2 (τ )〉) in the laser pulse, and hence

|c1|2 = 1 and |c2|2 = 0 (|c1|2 = 0 and |c2|2 = 1). Therefore,
at the zeroth order, the local populations |〈L|
(2lev)〉|2 and
|〈R|
(2lev)〉|2 are both 1/2 and there is no localization. In
contrast, the transient electron localization [10,11] and the
related MIBs [8,9], are due to the first-order terms in the
expansion and occur for any length of the pulse and initial
state of the system.
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FIG. 4. (Color online) Population transfer �P (1) from |R〉 to |L〉
in the single Floquet state (c1 = 1 and c2 = 0). The ground-state and
first excited-state energies as well as the transition dipole of the 2D
model at R = 7 were used to parametrize the two-level system. The
laser wavelength was set equal to 800 nm.

023401-5



NORIO TAKEMOTO AND ANDREAS BECKER PHYSICAL REVIEW A 84, 023401 (2011)

M
om

en
tu

m
 (

a.
u.

)

 

 
(a)

−1.5

−1
−0.5

0
0.5

1
1.5

−0.1 0 0.1

M
om

en
tu

m
 (

a.
u.

)

(b)

−1.5

−1
−0.5

0
0.5

1
1.5

Position (a.u.)

M
om

en
tu

m
 (

a.
u.

)

(c)

−10 −5 0 5 10
−1.5

−1
−0.5

0
0.5

1
1.5

 

 

(d)

−0.1 0 0.1

(e)

Position (a.u.)

(f)

−10 −5 0 5 10

FIG. 5. (Color online) Time evolution of the Wigner distribution
over a quarter cycle of the laser field for the 1D model: (a) t = −0.500,
(b) −0.450, (c) −0.400, (d) −0.351, (e) −0.301, and (f) −0.251 laser
cycles.

IV. SUBCYCLE-RESOLVED VIEW ON CREI

It is known that H2
+ is ionized rapidly when it is stretched to

internuclear distances of 5 to 12 a.u. during dissociation. This
phenomenon, called CREI, has been predicted [15,33–37] and
observed in experiments [38–41]. The mechanism has been
understood as follows [15,33,38]: The strong electric field of
the laser light lifts up the potential energy at one of the protons
while decreasing it at the other proton, which results in an
energy gap of about E(t)R0. If the electronic states follow E(t)
adiabatically, at the intermediate internuclear distances the
upper state lies above the internal potential barrier. Therefore,
it is expected that from this state the electron wave packet is
ionized efficiently. In this adiabatic picture, the populations of
the upper and lower states are considered to be constant over
one half cycle while the electric field points to one direction,
and the ionization current is expected to be the strongest at the
field maxima.

As discussed above, the first-order term in our Flo-
quet analysis causes the subcycle electron localization,
and the adiabatic picture of CREI partially breaks down on
the ultrashort time scale. It is therefore important to reexamine
another characteristics of CREI as well, namely, that the
electron is ionized from the uphill potential well, in order
to clarify the relation between MIB and CREI. This is difficult
to see in the probability density in the position space shown in
Fig. 1, but can be elucidated in the Wigner distribution [11,42].

Figure 5 shows six snapshots of the Wigner distribution of
the 1D fixed-nuclei model taken over a quarter period of the
laser field. The laser and molecular parameters are the same as
used in Figs. 1 and 2. The Wigner distribution in Fig. 5(a) is

taken when the electric field is zero and at this time the electron
density is equally distributed at the two nuclei at z = ±R0/2 =
±3.5. The oscillatory structure along the momentum (pz) axis
for z = 0 appears due to the two-center interference effect. As
pointed out in Ref. [11] this interference pattern is displaced
by the vector potential A(t).

It is the positive (red) part of the interference pattern which
mediates the transfer of the electron probability density from
one proton to the other. These structures are called momentum
gates (MGs) [11]. In Fig. 5(a), there is a gate at about pz = 0.2,
through which the probability flows toward the positive z

direction. As a result, the electron population at the right
proton (z = R0/2) increases during the time interval over
which the snapshots in Figs. 5(a) to 5(c) are taken. At the
same time, the MG is moved to larger pz, and therefore
the probability density transferred through this gate arrives at
z = R0/2 with higher momentum as time evolves. As a result,
the probability density can escape more easily the attraction of
the proton at z = R0/2 and ionize to z → +∞ as captured in
Fig. 5(d).

In the snapshots shown in Figs. 5(d) to 5(e), the transfer
through the first MG decreases while transfer through another
gate which moves from pz = −0.2 [Fig. 5(d)] to pz = 0
[Fig. 5(e)] becomes more prominent. This new gate transfers
the probability density from z = R0/2 to z = −R0/2, forcing
the probability density to climb up the laser electric potential.
Due to this uphill transport, the ionization burst started at the
time instant of Fig. 5(d) is ceased and the electron is partially
delocalized again in the snapshot shown in Fig. 5(f). We can
therefore conclude that the electron starts to be ionized from
the uphill potential well and the multiple burst phenomenon
can be understood as CREI modulated by the oscillating MGs.
A detailed analysis of the gating effect in terms of the Bohmian
trajectories has been given recently [9].

V. CONCLUSION

We confirmed that the previously reported MIBs in 1D
models of H2

+ are also present in a more realistic 2D model.
By analyzing the two-state model in terms of the series
expansion of Floquet states, we showed that the transient
electron localization and MIBs in a half cycle are represented
by the first-order term of the expansion and derived a simple
condition to predict the instants of maximum localization and
thus those of the MIBs. Our analysis of the sub-laser-cycle
electron dynamics in H2

+ refines the adiabatic view of CREI.
We showed in the quantum phase space that the ionizing
electron wave packets indeed start from the uphill potential
well as in the traditional CREI picture, but that the transport
from the uphill well to the downhill well is regulated by the
MGs, thus leading to the multiple bursts of ionization on the
ultrashort time scale.

ACKNOWLEDGMENTS

This work was supported by NSF.

[1] P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman,
Phys. Rev. Lett. 42, 1127 (1979).

[2] T. Popmintchev, M. C. Chen, P. Arpin, M. M. Murnane, and
H. C. Kapteyn, Nat. Photon. 4, 822 (2011).

023401-6

http://dx.doi.org/10.1103/PhysRevLett.42.1127
http://dx.doi.org/10.1038/nphoton.2010.256


TIME-RESOLVED VIEW ON CHARGE-RESONANCE- . . . PHYSICAL REVIEW A 84, 023401 (2011)

[3] A. Becker, R. Dörner, and R. Moshammer, J. Phys. B 38, S753
(2005).

[4] F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
[5] P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
[6] M. Uiberacker et al., Nature (London) 446, 627 (2007).
[7] G. L. Yudin and M. Y. Ivanov, Phys. Rev. A 64, 013409

(2001).
[8] N. Takemoto and A. Becker, Phys. Rev. Lett. 105, 203004

(2010).
[9] N. Takemoto and A. Becker, J. Chem. Phys. 134, 074309 (2011).

[10] I. Kawata, H. Kono, and Y. Fujimura, J. Chem. Phys. 110, 11152
(1999).

[11] F. He, A. Becker, and U. Thumm, Phys. Rev. Lett. 101, 213002
(2008).

[12] R. S. Mulliken, J. Chem. Phys. 7, 20 (1939).
[13] L. Pauling, Proc. Natl. Acad. Sci. USA 25, 577 (1939).
[14] T. Zuo and A. D. Bandrauk, Phys. Rev. A 52, R2511

(1995).
[15] T. Seideman, M. Y. Ivanov, and P. B. Corkum, Phys. Rev. Lett.

75, 2819 (1995).
[16] A. Santana, J. M. G. Llorente, and V. Delgado, J. Phys. B 34,

2371 (2001).
[17] S. E. Koonin, K. T. R. Davies, V. Maruhn-Rezwani,

H. Feldmeier, S. J. Krieger, and J. W. Negele, Phys. Rev. C
15, 1359 (1977).

[18] K. C. Kulander, K. R. S. Devi, and S. E. Koonin, Phys. Rev. A
25, 2968 (1982).

[19] M. W. J. Bromley and B. D. Esry, Phys. Rev. A 69, 053620
(2004).

[20] K. C. Kulander, F. H. Mies, and K. J. Schafer, Phys. Rev. A 53,
2562 (1996).

[21] R. Herman and R. F. Wallis, Astrophys. J. 123, 353 (1956).

[22] M. Y. Ivanov, P. B. Corkum, and P. Dietrich, Laser Phys. 3, 375
(1993).

[23] M. Y. Ivanov and P. B. Corkum, Phys. Rev. A 48, 580 (1993).
[24] N. Moiseyev, Phys. Rep. 302, 212 (1998).
[25] S.-I. Chu and D. A. Telnov, Phys. Rep. 390, 1 (2004).
[26] H. Rottke, B. Wolff-Rottke, D. Feldmann, K. H. Welge,
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