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Visualization and interpretation of attosecond electron dynamics
in laser-driven hydrogen molecular ion using Bohmian trajectories
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We analyze the attosecond electron dynamics in hydrogen molecular ion driven by an external in-
tense laser field using the Bohmian trajectories. To this end, we employ a one-dimensional model of
the molecular ion in which the motion of the protons is frozen. The Bohmian trajectories clearly visu-
alize the electron transfer between the two protons in the field and, in particular, confirm the recently
predicted attosecond transient localization of the electron at one of the protons and the related multi-
ple bunches of the ionization current within a half cycle of the laser field. Further analysis based on
the quantum trajectories shows that the electron dynamics in the molecular ion can be understood via
the phase difference accumulated between the Coulomb wells at the two protons. © 2011 American
Institute of Physics. [doi:10.1063/1.3553178]

I. INTRODUCTION

The causal interpretation of quantum mechanics by de
Broglie and Bohm provides the concept of trajectories for the
dynamics of microscopic objects.1, 2 These trajectories, called
Bohmian trajectories or quantum trajectories, are navigated
by the wavefunction. Conversely, if we regard the probabil-
ity density (i.e., the squared modulus of the wavefunction)
of the system as a fluid, the flow of this fluid can be elu-
cidated by the quantum trajectories.3, 4 It is this characteris-
tics of the Bohmian trajectories that we want to utilize in this
article to visualize and analyze a recently revealed counter-
intuitive electronic motion in H+

2 molecular ion exposed to
intense laser light on an attosecond time scale.5–7

Previously, we found in ab initio numerical simulations
that H+

2 at intermediate internuclear distances (i.e., between
the equilibrium distance and the dissociation limit) in an in-
tense infrared laser pulse shows multiple bursts of ioniza-
tion within a half-cycle of the laser field oscillation.7 This
ionization dynamics contradicts the widely accepted picture
of strong-field ionization, namely that an electron leaves the
atom or molecule with largest probability at the peaks of the
oscillating electric field of the laser. For example, in the often
used tunnel ionization picture the electron tunnels through the
barrier created by the binding potential of the ionic core and
the electric potential of the laser field. This tunnel barrier is,
of course, thinnest when the electric field strength is strongest,
which leads to the above mentioned expectation for the most
likely time instants of the electron escape. We identified that
the unexpected multiple ionization bursts are induced by a
previously reported ultrafast transient localization of the elec-
tron density at one of the protons.5 This attosecond dynamics
can cause that the electron density near the tunnel barrier in
the molecular ion is highest when the external field strength
is below its peak strength. Correspondingly, the electron does
not tunnel most likely at the maxima of the field but at other
time instants.

a)Electronic mail: norio@jilau1.colorado.edu.

We confirmed and extended earlier interpretations5, 8 that
the internal dynamics of the electron is a result of a strong and
exclusive trapping of the population within a pair of states
of opposite parity, so-called charge resonant states.9 Conse-
quently, the attosecond localization dynamics of the electron
in the hydrogen molecular ion driven by the laser field can
be successfully reproduced using a two-state model.7 The dy-
namics can be understood also by the phase-space flow of the
electron probability density regulated through the so-called
momentum gates which are shifted in time by the vector po-
tential of the external laser field.6

However, results of numerical simulations for the flow of
the electron probability density often do not reveal many de-
tails and cannot provide much further insights into the internal
electron dynamics in the molecular ion. We therefore use the
concept of Bohmian trajectories to provide a complementary
picture of the dynamics. By analyzing the motion of the tra-
jectories, we furthermore clarify that it is the phase difference
of the local wavefunctions at the two protons that is the ori-
gin of the force, which is sometimes driving the electron in
the direction opposite to the strong electric field of the laser
light.

We note here that the Bohmian mechanics has attracted
much attention in the last decade as a basis of developing new
and efficient methods for simulating the time evolution of a
quantum system.4, 10–14 This resurgence of attention was ini-
tiated by the demonstrations that the time-evolving phase and
amplitude of a wavefunction can be calculated over the course
of the Bohmian trajectories for which a closed-set of equa-
tions of motion were derived.10, 11 Thus, it was shown that
the wavefunction can be synthesized from the Bohmian tra-
jectories rather than solving the time-dependent Schrödinger
equation (TDSE) itself on a set of grid points fixed in space.
In the present work, however, we use the traditional method
to calculate the Bohmian trajectories from the wavefunction
obtained by solving TDSE.3 In this way, we assure that the
resultant Bohmian trajectories correctly visualize the flow of
the probability density, and we can focus on the analysis of
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the properties (especially, the velocity) of the Bohmian tra-
jectories.

The rest of the paper is organized as follows. In Sec. II,
we present the model for H+

2 used for our analysis. In Sec.
III, we present the results for the Bohmian trajectories and
compare them with those for the electron probability densities
obtained from ab initio numerical simulations. We identify
the phenomena of transient electron localization and multiple
ionization bursts in the time evolution of the trajectories. In
Sec. IV, we make use of the Bohmian trajectory calculations
to provide an analysis of the sometimes counter-intuitive elec-
tron dynamics in the hydrogen molecular ion. Finally, Sec. V
concludes the paper.

II. THEORY

In recent studies of laser induced dynamics of the hydro-
gen molecular ion, the full three-dimensional (3D) electronic
motion (e.g., Ref. 15) or the two degrees-of-freedom elec-
tronic motion in cylindrical coordinates (e.g., Refs. 5,16–18)
along with one-dimensional (1D) nuclear motion have been
taken into account. In the present study, we consider a simpler
1D model for the electronic dynamics of H+

2 in which the po-
sitions of the protons are fixed in space. We have shown that
the electron localization dynamics inside the molecular ion
as well as the phenomenon of multiple ionization bursts does
not change in higher dimensional models.7, 19 In particular, we
found that the nonadiabatic coupling between the electronic
and nuclear motions is not essential for the internal electron
dynamics. Also, use of the soft-core potential in the 1D model
does not alter the essence of the dynamics, although there may
be a discrepancy from the actual 3D Coulombic system at a
quantitative level.20 In fact, the attosecond electron localiza-
tion in (model) hydrogen molecular ion has been reported in
all the cases of Coulombic potential in 3D,5 soft-core poten-
tial in 3D,6 and soft-core potential in 1D.7

A. 1D fixed-nuclei model of H+
2

In our 1D model of H+
2 with fixed positions of the pro-

tons, the internuclear axis was assumed to be parallel to the
polarization direction of the linearly polarized laser light. The
Hamiltonian of this model system is given by (Hartree atomic
units, e = m = ¯ = 1, are used throughout this article unless
noted otherwise)

H (t) = −1

2

∂2

∂z2
+ VC(z; R) + VL(z, t), (1)

where z is the electron position measured from the center-of-
mass of the two protons, which are separated by the distance
R. The Coulomb interaction between the electron and the two
protons was approximated by the soft-core potential,21, 22

VC = − 1√
(z + R/2)2 + a

− 1√
(z − R/2)2 + a

, (2)

where a is the soft-core parameter. The laser-electron interac-
tion was expressed in the length gauge as

VL(z, t) = zE(t). (3)

The laser electric field E(t) is related to the vector potential
A(t) by

E(t) = −∂ A(t)

∂t

= −∂ f A(t)

∂t
sin

[
ω

(
t − T

2

)
+ ϕ

]

− f A(t)ω cos

[
ω

(
t − T

2

)
+ ϕ

]
, (4)

where we used the following form of the vector potential:

A(t) = f A(t) sin

[
ω

(
t − T

2

)
+ ϕ

]
, (5)

f A(t) =
{

A0 sin2(π t/T ) (0 ≤ t ≤ T )

0 (otherwise)
. (6)

The full-width at half-maximum (FWHM) of this envelope
function, f A(t), is equal to T/2.

B. Propagation of the wavefunction
and the quantum trajectories

With the Hamiltonian given as above, the wavefunc-
tion �(z, t) was propagated according to the corresponding
TDSE,

i
∂

∂t
�(z, t) = H (t)�(z, t). (7)

This TDSE was solved numerically using the second-order
split-operator method on the Fourier grid.23–25 The spatial
and temporal grid intervals used for the simulations were �z
= 0.152 and �t = 0.0245 or smaller.

At the same time as the wavefunction �(z, t) was
propagated in time, the Bohmian trajectories {z j (t)| j
= 1, . . . , Ntraj} were propagated as well by solving the
equation of motion,

dz j

dt
= v(z j (t), t), (8)

where the velocity field v(z, t) is given by the phase gradient
of the wavefunction,

�(z, t) = C(z, t) exp(i S(z, t)) (9)

with C ≥ 0 and S ∈ R, as

v(z, t) = ∂S

∂z
. (10)

The following identity was utilized in the actual computation:

∂S

∂z
= Im

[
1

�

∂�

∂z

]
. (11)

The ordinary differential equation (8) with respect to t was
solved by the fourth order Runge–Kutta scheme26 with the
fixed step size of 2�t , i.e., twice the time step of the wave-
function propagation. The wavefunction value at every other
step of its propagation was used to evaluate the velocities of
the trajectories at the mid-point of one Runge–Kutta step to
achieve the fourth order accuracy. We may note parentheti-
cally that expression (10) for the velocity field is valid for the
wavefunction in the length gauge representation used in the
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present study. In the velocity gauge representation, the veloc-
ity field is given by v(z, t) = ∂S/∂z − A(t).3

The initial positions of the quantum trajectories were dis-
tributed at a regular interval, δz, and for each trajectory we
assigned the weight,

w j =
∫

	 j (t0)
dz|�(z, t0)|2, (12)

	 j (t0) =
{

z|z j (t0) − δz

2
< z < z j (t0) + δz

2

}
. (13)

At the limit of δz → 0, we may consider that the weight w j

assigned at the initial time (t = t0 = 0) is conserved over the
time evolution.27, 28

III. VISUALIZATION OF THE INTERNAL ELECTRON
DYNAMICS

In this section, we first compare the result of the Bohmian
trajectory calculation with electron probability density ob-
tained by integrating the TDSE for the 1D H+

2 model initially
prepared in its ground state and brought to interaction with a
linearly polarized intense laser pulse. For this exemplary com-
parison, we have chosen the distance between the two protons
as R = 7 and considered a laser pulse with a peak intensity of
4 × 1013 W/cm2, a wavelength of 1064 nm, a full duration
of T = 10 cycles, and a carrier-to-envelope phase (CEP) of
ϕ = 0. We set the soft-core parameter as a = 2.0 so that the
energies of the ground and first-excited electronic states of
the 1D model (−0.519 and −0.491, including the 1/R nu-
clear repulsion) best reproduce the exact values (−0.506 and
−0.496)(Ref. 29) for the actual H+

2 in 3D space at R = 7. The
initial positions of 100 quantum trajectories were distributed
over −10 ≤ x ≤ 10 at a regular interval δz = 0.202, and their
weights {w j } were determined via Eq. (12).

In Fig. 1, the Bohmian trajectories [Fig. 1(a)] are
presented along with the electron probability density

FIG. 1. Comparison of the quantum trajectories (a) and the electron proba-
bility density (b) for the 1D model of H+

2 at R = 7 for the interaction of H+
2

with the electric field (c) of a laser pulse (peak intensity 4 × 1013 W/cm2,
wavelength 1064 nm, duration T = 10 cycles, and CEP ϕ = 0). In panel (a),
the gray-scale color of each trajectory indicates log10 w j . In panel (b), the
color code indicates log10 |�|2, where � is obtained by solving the TDSE
(7).

[Fig. 1(b)] as a function of time. For the sake of compari-
son, the electric field of the laser pulse is shown in Fig. 1(c)
as well. Subject to the intense electric field, the trajectories
leave the core region (at z ≈ 0) of the molecular ion in alter-
nating directions (z → ±∞) at every half cycle of the laser
field. It is clearly seen that the number of ionizing trajecto-
ries increases as the field strength increases during the laser
pulse. The trajectories liberated from the core region show
wiggling motion forced by the alternating electric field of the
laser. Due to this quiver motion, some of the trajectories, de-
pending on the time instants of their release, are driven back
to the core region and scattered off the protons. Please note
that the result for the Bohmian trajectories visually agree very
well with that for the electron probability density: regions of
large probability density correspond to a large density of the
Bohmian trajectories. Thus, the Bohmian trajectories provide
a complete overall picture of the ionization process, including
the quiver motion and the rescattering of the electron in the
laser field. This agrees with the findings of earlier studies us-
ing Bohmian trajectories to describe the interaction of atoms
with intense laser pulses.14, 30–32

In Figs. 2(a)–2(c), we show a detailed view of the quan-
tum trajectory motion in and close to the core region (the pro-
tons are located at z = ±R/2 = ±3.5) over the central field
cycle (T/2 − 2π/ω < t < T/2 + 2π/ω) of the laser pulse.
The laser electric field in the same time window is also shown
in Fig. 2(d). In the simulation for Fig. 2(a), the wavefunc-

FIG. 2. Close-up view on the time evolution of the quantum trajectories (a–c)
over the single laser cycle at the pulse peak. The laser electric field is shown in
panel (d) for comparison with the motion of the quantum trajectories. In panel
(a), no wavepacket absorber was set close to the core region. In panel (b), an
absorber was set on one side of the core region at −11 < z < −7. In panel
(c), two absorbers were set on both sides of the core region at 7 < |z| < 11.
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tion masks of cos1/4-shape were placed over 270 < |z| < 300
only to avoid the reflection of the ionized wavepackets at the
boundaries of the large simulation box, leaving the electron
dynamics in the region of z shown in this panel unaffected.
The quantum trajectories show an ultrafast oscillatory mo-
tion around the core, |z| < 10, and they are pushed outward
from z = R/2 for the durations marked by A-D in Fig. 2(a).
These outward motion may involve the direct ionization and
rescattering of the electron. To separate these two types of
processes, we suppressed the rescattering effect on the nega-
tive z-side by setting a wavefunction mask at −11 < z < −7
for the simulations in Fig. 2(b).7, 33–35 As a result, the peak A
in Fig. 2(a) disappears in Fig. 2(b), indicating that this peak
was created by the wavepacket driven back from z < 0 and
passing through the core region toward z > 0. In Fig. 2(c),
the wavefunction masks were set close to the core on both
sides (at 7 < |z| < 11), and all the rescattering wavepackets
were absorbed after the initial ionization. The two peaks B
and C in Fig. 2(a) are still present in Fig. 2(c) while peak D
disappears, indicating that there are actually two bursts of ion-
ization under the present conditions. These results confirm the
previously reported phenomena of multiple ionization bursts
and attosecond electron localization.5, 7

The quantum trajectories in Fig. 2(c) clearly elucidate
that the electron probability transfers back and forth between
the two protons on the ultrafast time scale shorter than a half-
cycle of the laser field. This motion has not been as obvious
in the plot of the electron probability density in the previous
studies.5, 7 Please note that the electronic motion in Fig. 2(c)
between the two potential wells created by the protons does
not necessarily follow the laser-electron interaction potential
VL. For example, at t = 5 cycles, the oscillating laser elec-
tric field E(t) is peaked in the negative direction [cf., Fig.
2(d)], and hence the slope of VL pushing the electron to-
ward z → +∞ becomes maximum. Nevertheless, for a short
time before t = 5 cycles, we observe some bound trajecto-
ries propagate in the opposite direction from the proton lo-
cated at z = R/2 = 3.5 to the other one at z = −R/2 = −3.5
by climbing up the potential VL. This counter-intuitive (and
classically forbidden) motion of the electron was noticed first
in the context of coherent control of electron localization
in dissociating H+

2 molecule by the Wigner representation.6

The present results confirm this motion and visualize it using
Bohmian trajectories.

IV. ANALYSIS OF THE ELECTRON DYNAMICS USING
BOHMIAN TRAJECTORIES

We have seen so far that the Bohmian trajectories clearly
visualize the transient electron localization and multiple ion-
ization bursts within a half-cycle of the laser field oscilla-
tion. In this section, we will now investigate the origin of the
counter-intuitive motion of the Bohmian trajectories. To this
end, we focus on the results for the intra-molecular electron
transfer from one proton to the other, obtained by using the
wavepacket absorbers over 7 < |z| < 11 in order to eliminate
the effect of rescattering wavepackets [cf., Fig. 2(c)].

FIG. 3. Analysis of the intra-molecular motion of the quantum trajectories in
terms of the phase of the wavefunction and the velocity field. (a) Phase S(z, t)
and the quantum trajectories {z j (t)}. (b) Velocity field v(z, t) and the quantum
trajectories {z j (t)}. (c) Phase difference between the two wells calculated
from the 1D model [αlr(t), blue solid line] and from the approximate solution
of the two-state model [α(2lev)

lr (t), red dashed line]. (d) Electric field of the
laser pulse (wavelength 1064 nm, peak intensity 4 × 1013 W/cm2, duration
T = 10 cycles, and CEP ϕ = 0).

A. Velocity field for the Bohmian trajectories

As pointed out before, we observe that some of the tra-
jectories turn their direction toward z < 0 near the peak of
the electric field at t = 5 cycles, while the classical force due
to the laser electric field pushes the electron in the positive
z direction. We now investigate this counter-intuitive motion
in terms of the velocity field, v(z, t) = ∂S(z, t)/∂z, for the
Bohmian trajectories. Figure 3(a) shows the phase S(z, t) of
the wavefunction as a function of time and electron posi-
tion. The 2π -periodicity of the wavefunction phase is faith-
fully represented by the cyclic hue of the colors. Figure 3(b)
shows the velocity field v(z, t). These were calculated using
the same parameters of the laser field as before. In both fig-
ures, we superposed the Bohmian trajectories for further vi-
sualization.

From Fig. 3(a), we can notice that at a given time instant
the phase of the wavefunction is almost constant for z within
each of the potential wells. However, the phase propagates at
different speeds in the two wells. This causes a phase gra-
dient around z = 0 and, consequently, a large absolute value
of the velocity field in the region between the protons. Based
on this observation, we may expect the sign of v = ∂S/∂z
around z = 0 to be the same as S(z = R/2) − S(z = −R/2).
The solid blue curve in Fig. 3(c) shows the phase difference
defined as

αlr(t) = arg

[
�

(
z = − R

2
, t

)]

− arg

[
�

(
z = R

2
, t

)]
,

(14)

and the sign of −αlr(t) indeed agrees with that of v .
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FIG. 4. Wavefunction �(z, t) is plotted in the complex �-plane at (a) t
= 4.60 laser cycles, (b) t = 4.61 laser cycles, and (c) t = 4.62 laser cycles
by taking the position coordinate z ∈ [−R/2, R/2] as the parameter. The red
circle, cross, and triangle in each panel indicate the wavefunction values at
z = −R/2, 0, and R/2, respectively.

In Fig. 3(c), the relative phase αlr(t) changes its sign ei-
ther by continuously passing through αlr = 0 (at t = 4.5, 5.0,
and 5.5 laser cycles) or by jumping between αlr ≈ ±π (at t
= 4.61, 4.89, 5.10, and 5.41 laser cycles). At the time instants
corresponding to both types of sign change, the Bohmian
trajectories are forced to turn their direction. However, com-
parison of Fig. 3(c) with the Bohmian trajectories in Figs. 3(a)
and 3(b) reveals that the sign change due to the abrupt phase
jump causes the attosecond transient electron localization.

In Fig. 4, we illustrate the cause of the phase jump by
plotting the wavefunction on the complex �-plane by taking
the position coordinate −R/2 ≤ z ≤ R/2 as the parameter
at three instants around the phase jump at t = 4.61 laser
cycles. Before the jump [Fig. 4(a)], we see that the phase at
z = −R/2 (circle) is larger than z = R/2 (triangle). At the
instant of the jump [Fig. 4(b)], the �-curve passes through
the origin, i.e., a node |�| = 0 is developed. At the position
of the node, the phase is undefined, and hence the relative
phase αlr also becomes undefined temporarily. However, at
the next moment [Fig. 4(c)], the �-curve has crossed the
origin since the phase at z = −R/2 accumulates faster than
the phase at z = R/2. At this time, the phase at z = −R/2
is smaller than that at z = R/2. Intuitively speaking, if the
local phase at one well becomes more and more advanced (or
retarded) from that at the other well and the phase difference
approaches π (or −π ), then the �-curve becomes almost
straight (as in Fig. 4) and passes through the origin at some
instant. At this moment, the advanced-retarded relation of the

local phases at the two wells interchanges. Before concluding
this section, we should note that the jump of the relative phase
αlr causes a sudden change of v(z, t) between ±∞. However,
this divergence of v(z, t) is accompanied by a node of the
wavefunction, and therefore the flux v(z, t)|�(z, t)|2 stays
finite.

B. Phase difference in two-state model

Next, we show that the phase difference αlr(t) can be
approximated by a simple expression based on a two-state
model. To this end, we analyze the relative phase between
the two potential wells in terms of the following localized
states,36–38

|l〉 = 1√
2

[|g〉 + |u〉] , (15)

|r〉 = 1√
2

[|g〉 − |u〉] , (16)

where |g〉 and |u〉 are the ground and first-excited electronic
states, respectively, of the 1D fixed-nuclei model. Without
loss of generality, we set the phases of |g〉 and |u〉 such that
|l〉 and |r〉 are localized at z = −R/2 and z = R/2, respec-
tively. By approximating the state of the system in the basis
of these two localized states as |�(t)〉 = cl(t)|l〉 + cr(t)|r〉, the
time evolution of cl(t) and cr(t) is given by

i
d

dt

(
cl

cr

)
=

[
H (2lev)

0 + V (2lev)
L

](
cl

cr

)
, (17)

with the field-free Hamiltonian

H (2lev)
0 = −�0

2

(
0 1
1 0

)
, (18)

and the interaction potential

V (2lev)
L = −dgu E(t)

(
1 0
0 −1

)
, (19)

where �0 is the absolute value of the difference between the
field-free energies of |u〉 and |g〉, and dgu = −〈g|z|u〉 ≥ 0 is
the transition dipole moment between |g〉 and |u〉.

If the laser-molecule coupling |dgu E(t)| is sufficiently
strong and/or the laser frequency ω is sufficiently larger than
the tunnel splitting �0, we may approximate the solution to
the two-state TDSE (17) by taking V (2lev)

L as the zeroth or-
der reference Hamiltonian and omitting the H (2lev)

0 term.38–44

Such a zeroth order solution can be easily obtained as38

c(0)
l (t) = exp

{−idgu[A(t) − A(t0)]
}

c(0)
l (t0), (20)

c(0)
r (t) = exp

{
idgu[A(t) − A(t0)]

}
c(0)

r (t0), (21)

where the relation of the electric field and vector potential,
Eq. (4), was used. Then, the phase difference between the two
wells can be approximated by

α
(2lev)
lr (t) = arg

[
c(0)

l (t)
]

− arg
[
c(0)

r (t)
]
. (22)
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By substituting Eqs. (20) and (21) into Eq. (22), and noting
that A(t0) = 0 at the beginning of the laser pulse at t = t0 = 0,
we obtain

α
(2lev)
lr (t) = −2dgu A(t) + α

(2lev)
lr (t0). (23)

The phase difference calculated by this expression is plotted
in Fig. 3(c) with the red dashed line. It is presented in the
[−π, π ] interval as we have already understood above that
the relative phase stays approximately within this interval. We
can see that the result of the two-state model closely repro-
duces the exact value (blue solid line) calculated numerically
by Eq. (14).

The condition, α
(2lev)
lr (tturn) = nπ , n ∈ Z, for the time in-

stant tturn at which the velocity field between the two protons
changes its sign is then given by

A(tturn) = −nπ + α
(2lev)
lr (t0)

2dgu
. (24)

This expression has a similar form as the condition for the
time instant tloc of maximum electron localization,

A(tloc) = mπ + χ

2dgu
, (25)

where m ∈ Z, derived previously7 based on the series expan-
sion of the Floquet states for the two-state model.44 In fact,
these two expressions are identical at the limit of long laser
pulse duration, where the mixing angle χ of the two Floquet
states reduces to the initial phase difference α

(2lev)
lr (t0).

C. Origin of the counter-intuitive electron motion

The result of the two-state analysis in Subsection IV B,
in which we consider V (2lev)

L as the zeroth order Hamiltonian
while neglecting the tunnel hopping term H (2lev)

0 , provides us
with an intuitive picture. Please note that the transition dipole
moment has the asymptotic form dgu ∼ R/2 at large R,9 and
the difference of the diagonal elements of V (2lev)

L is, hence,
approximately equal to RE(t), which is the difference of the
electric potential induced by the laser field between the two
wells. Using this asymptotic form of dgu, the phase difference
in Eq. (23) can be rewritten as

α
(2lev)
lr (t) ∼

∫ t

t0

dt ′ RE(t ′) + α
(2lev)
lr (t0). (26)

This expression elucidates that the origin of the phase differ-
ence between the two potential wells, and hence the velocity
field, is the difference of the electric potential energies be-
tween the two wells induced by the laser light.

This interpretation of the electronic dynamics based on
the zeroth order two-state analysis predicts that the motion
of the electron should be still counter-intuitive even at a rel-
atively low intensity at which only one localization per half-
cycle is predicted by Eq. (24) or (25). This is demonstrated
in Fig. 5, in which the 1D model was initially prepared in
the ground state, and a laser pulse of peak intensity 4 × 1012

W/cm2 was applied. The other parameters were the same as
above. The initial phase difference αlr(t0) is zero due to the
choice of the initial state as |g〉, and the direction of the veloc-
ity field around z = 0 [Fig. 5(b)] evolves in time according

FIG. 5. Time evolutions of (a) the phase of the wavefunction and (b) the ve-
locity field are plotted along with the quantum trajectories. The system was
initially prepared in the ground state |g〉. Panel (c) shows the phase differ-
ence between the two local potential wells calculated from the TDSE solu-
tion (blue solid line) and from the two-state model (red dashed line). Panel
(d) shows the electric field of the laser pulse (wavelength 1064 nm, peak in-
tensity 4 × 1012 W/cm2, duration T = 10 cycles, and CEP ϕ = 0).

to −A(t) as predicted by the two-state analysis [Fig. 5(c)].
Due to the phase-lag between A(t) and E(t), the quantum
trajectories are navigated from z = R/2 to z = −R/2 dur-
ing the 4.5 < t < 5, for example, while the electric force
−E(t) points in the opposite direction during 4.75 < t < 5.
As a consequence, the trajectories are always accumulated
at the upper potential well, in contradiction to our classical
intuition.

FIG. 6. Same as Fig. 5 except that here the system was initially prepared in
the first excited state |u〉.
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FIG. 7. Same as Fig. 5 except that here a laser pulse with long wavelength
(5000 nm) and low intensity (4 × 1010 W/cm2) (duration T = 10 cycles,
CEP ϕ = 0) was applied.

If, instead, the system is initially prepared in the first ex-
cited state |u〉, the initial phase difference αlr(t0) = −π . Due
to this offset, the quantum trajectories (and the electron proba-
bility density) should be navigated toward the lower potential
well in this case. In fact, we can see that this is the case for the
results presented in Fig. 6, where we applied the same laser
pulse as used for the results shown in Fig. 5 but prepared the
system in the 1D model of H+

2 in the first excited state.
We may finally ask if there is a parameter regime in

which our intuitive (classical) picture that the electron should
move in the direction of the electric force is always recovered.
As we mentioned above, our two-state analysis is based on
the assumption that V (2lev)

L is the dominant term, i.e., that the
laser-molecule coupling is strong and/or the photon energy
is sufficiently larger than the tunnel splitting. Please note that
the photon energy at the wavelength of 1064 nm is ω = 0.043,
whereas the tunnel splitting is �0 = 0.028 for the 1D model
at R = 7. If we decrease the photon energy as well as the
laser intensity, the two-state analysis is no longer applicable.
In fact, the results in Fig. 7 show that at a wavelength of 5000
nm and an intensity of 4 × 1010 W/cm2 our two-state analysis
breaks down since the phase difference α

(2lev)
lr (t) (red dashed

line) predicted by the two-state analysis deviates qualitatively
from the value of αlr(t) (blue solid line) calculated from the
TDSE solution [Fig. 7(c)]. We can see that in this parame-
ter regime, in which the conventional weak field perturbation
theory may be applied, the motion of the quantum trajecto-
ries (and the electron probability density) follows the electric
force of the laser field, and the intuitive (classical) picture is
indeed recovered.

V. CONCLUSIONS

We have presented an analysis of the attosecond elec-
tron dynamics in hydrogen molecular ion driven by an

intense laser pulse in terms of Bohmian trajectory calculations
using a 1D model. Recently predicted phenomena such as at-
tosecond transient electron localization and multiple bursts of
ionization within a half cycle of the laser pulse are clearly
represented by the Bohmian trajectories. Further analysis let
us identify the origin of the sometimes counter-intuitive mo-
tion of the Bohmian trajectories as due to the time-evolving
phase difference of the wavefunction between the two poten-
tial wells induced by the electric potential of the laser field.
We were able to predict the time instants at which the trajec-
tories change their directions in terms of the simple two-state
model. Following our analysis, we showed that, exposed to
an intense laser field, the electron dynamics in the hydrogen
molecular ion often does not follow the (classical) force of
the laser electric field. Our classical expectations are, how-
ever, recovered in the perturbative weak-field limit in which
the photon energy and intensity of the laser field are both suf-
ficiently small.
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