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Temporal analysis of nonresonant two-photon coherent control involving bound
and dissociative molecular states
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We theoretically study the control of two-photon excitation to bound and dissociative states in a molecule
induced by trains of laser pulses, which are equivalent to certain sets of spectral phase modulated pulses. To
this end, we solve the time-dependent Schrödinger equation for the interaction of molecular model systems
with an external intense laser field. Our numerical results for the temporal evolution of the population in the
excited states show that, in the case of an excited dissociative state, control schemes, previously validated for the
atomic case, fail due to the coupling of electronic and nuclear motion. In contrast, for excitation to bound states
the two-photon excitation probability is controlled via the time delay and the carrier-envelope phase difference
between two consecutive pulses in the train.
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Initial ideas of quantum coherent control were based on
quantum path interferences using phase-controlled laser fields
[1] and pump-dump (pump-probe) schemes using sequences
of laser pulses with tunable delays [2,3]. At first glance
the former technique makes use of coherence properties of
light fields in the frequency domain while the latter takes
advantage of the temporal evolution of a process. However,
converting the respective analysis from one domain to the
other often adds a complementary view on a particular
control scheme [4]. Recent development of femtosecond
pulse shaping techniques extended the variety of schemes
in quantum coherent control (for a review, see Ref. [5]),
which is often analyzed in the frequency domain based on the
multipathway interference concept. For example, destructive
and constructive interference among various pathways can
tune few-photon absorption probabilities to zero or maximum
by modification of the spectral phase of the pulse (e.g., [6–10]).
We recently investigated some of these control schemes based
on spectral phase modulations from the complementary time-
dependent perspective via numerical solutions of the time-
dependent Schrödinger equation (TDSE) of an atom [11]. The
analysis showed that two-photon excitation probabilities in an
(hydrogen) atom are controlled via destructive or constructive
interferences between the amplitudes induced by consecu-
tive subpulses in a pulse train. The results also provided
insights into the control of atomic (2 + 1)-photon ionization
processes. Here, we supplement our previous studies by the
time-dependent analysis of the control of different types of
two-photon transitions in molecules, namely, bound-to-bound
state and bound-to-dissociative state transitions.

To this end, we make use of two models describing
the interaction of a single-active-electron diatomic molecule
with an external field. The following two-dimensional (2D)
model, which accounts for the coupled electronic and nuclear
dynamics, has been frequently applied in simulations of H2

+
interacting with a laser field. The field-free Hamiltonian is
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given by (we use Hartree atomic units, e = m = h̄ = 1, if not
specified otherwise)

H1(R,z) = p2
R

2M
+ p2

z

2m
− 1√

(z + R/2)2 + a1

− 1√
(z − R/2)2 + a2

+ 1√
R2 + b

, (1)

where M and m are the reduced masses of the nuclei and
the electron, respectively. R is the internuclear distance, z

is the electron position with respect to the center of mass of
the nuclei, and a1 and a2 as well as b are soft-core Coulomb
parameters. In the case of H2

+ one chooses a1 = a2. However,
the symmetry of the corresponding Hamiltonian prohibits a
two-photon transition from the electronic ground state to the
first dissociative state.

For our goal to study the coherent control of two-photon
processes we set a1 �= a2 to break the symmetry of the
Hamiltonian. In our studies, we arbitrarily choose a1 = 1.0,
a2 = 2.0, and b = 0.03. The adiabatic potential energy curves
for the ground and first excited state of this system, calcu-
lated using imaginary time propagation of the corresponding
Schrödinger equation, are shown in Fig. 1(a). The equilibrium
distance of the two protons is R0 = 3.36, and the energy
gap between the states at R0 is �E = 6.88 eV. The curve
of the first excited state has a shallow well, which however
does not influence the dissociative character of the state for
wave packets pumped from the initial ground state close to the
equilibrium distance.

To study transitions between bound states, we make use of
a molecular model system in which the Coulomb repulsion
1/R is replaced by a Morse potential:

H2(R,z) = p2
R

2M
+ p2

z

2m
− 1√

(z + R/2)2 + a1

− 1√
(z − R/2)2 + a2

+ D(1 − e−λ(R−R0))2 − D,

(2)

whereD is the depth of the well, R0 is the equilibrium distance,
λ = √

k/2D with k being the bond force constant, and all the
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FIG. 1. Potential energy curves of the ground and lowest lying
excited states of our 2D molecular model systems: (a) model with a
dissociative excited state and (b) model with bound excited states.

other parameters are defined as before. Using a1 = a2 = 4.0,
D = 0.4, λ = 0.5, and R0 = 2.0, the potential energy curves
of the ground state and the first two excited states, shown in
Fig. 1(b), are well separated. We consider nonresonant two-
photon transitions to the second excited state, which is possible
since the energy difference between the ground state and the
first excited state clearly exceeds the corresponding photon
energy required for the two-photon transition.

To investigate the time evolution of the excitation process,
we solve the corresponding TDSE of the molecular model
systems interacting with a laser pulse linearly polarized along
the internuclear axis (j = 1,2),

i
∂

∂t
�(R,z; t) = [Hj (R,z) + E(t)z]�(R,z; t), (3)

in a grid representation using the Crank-Nicholson method.
For the field interaction we use dipole approximation and the
length gauge. To discretize the partial differential equation,
we employ a time step of �t = 0.01 and a spatial grid with
spacings of �R = 0.03 and �z = 0.2. The populations in
the ground state and the excited bound states are obtained
by projection on the respective field-free states, which for
the laser parameters used in the present study is a reasonable
approximation even during the interaction with the external
field. In the case of the excited dissociative state the population
is calculated as Pexc = 1 − ∑n

ν=0 Pν , where ν denotes the
vibrational mode in the electronic ground state and n is
the total number of the vibrational states considered. The
ionization and dissociation probabilities are calculated as
the outgoing probability flux at the respective boundaries of
the grid. At the edges we use cos1/6 mask functions to suppress
reflections. We have checked that the results are not influenced
by the remaining small inaccuracies due to the boundary
conditions. We use a grid of NR × Nz = 600 × 200 points
(NR × Nz = 400 × 600 points) for the dissociative (bound)
state model.

First, we investigate control of two-photon excitation from
a bound state to a dissociative molecular state. To this end,
we consider the dissociative state model and a spectral phase
modulated laser electric field of the form

E

(
ω

2
+ �

)
= E0sech

(
1.76�

�ω

)
exp[iα cos(β� + φ)].

(4)
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FIG. 2. Two-photon coherent control to a dissociative molecular
state. The upper panels show the electric field distribution as a
function of time for (a) φ = 0 and (b) φ = π/2. The insets show the
central field cycle and the carrier-envelope phase of each subpulse.
In the lower panels the time evolution of the probabilities in the first
excited state (solid line) is presented for (c) φ = 0 and (d) φ = π/2.
We also show the dissociation probabilities (dashed line).

Such fields have been used recently by Meshulach and
Silberberg [6] to study the control of two-photon transitions
in atoms. For our numerical simulations we choose the central
frequency ω/2 = 3.44 eV (half of the energy gap of the desired
transition), the bandwidth �ω = 0.2 eV, the modulation depth
α = 1.2024, and the modulation frequency β = 35 fs, while
the modulation phase φ is varied. A Fourier transform (FT)
of these fields yields a pulse train in the temporal domain. In
our studies we fix the (overall) peak intensity in the pulse train
to I0 = 1 × 1012 W/cm2, which for the present frequencies is
within the perturbation regime.

In the atomic case it was shown [12] that using φ = 0 a
dark pulse is formed and the final population in the excited
state vanishes. On the other hand the excitation probability
was found to be maximized for φ = π/2. In contrast, we find
that for the two-photon transition to a dissociative state in
the present molecular model system that the final excitation
probability is independent of the specific value of φ, as
exemplified by the results for φ = 0 (left-hand panels) and
π/2 (right-hand panels) in Fig. 2. The excitation probability
increases stepwise with the interaction of every subpulse and
equals the probability for dissociation at the end (dashed lines).
This indicates that it is the nuclear dynamics which causes the
breakdown of the coherent control scheme.

In order to confirm this assumption, we perform another
series of calculations in which we fix the internuclear distance
R = R0 in Eq. (1) to suppress any nuclear dynamics but keep
all other parameters unchanged except the central frequency
ω/2 = 3.48 eV. The central frequency is slightly increased
since the ground state energy of the fixed nuclei model is
lower than that of the 2D model. The results of the fixed nuclei
model for φ = 0 (Fig. 3, left-hand panels) and φ = π/2 (Fig. 3,
right-hand panels) agree with the findings for the atomic case.
For φ = 0 the final excited population is (close to) zero (dark
pulse), while for φ = π/2 the population is maximized (bright
pulse). Thus, from the temporal analysis of the process we
conclude that coherent control of the two-photon excitation
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FIG. 3. Same as Fig. 2, but for a molecular model system with
fixed internuclear distance R = R0.

to a dissociative molecular state using a train of pulses [or, a
spectral phase modulated pulse of the form given in Eq. (4)]
fails since each of the wave packets pumped to the excited
state by the subpulses in the train quickly propagates to larger
internuclear distances. Therefore, concerning the control of the
total population in the excited (dissociative) state there is no
signature of destructive nor constructive interferences between
the wave packets generated from subsequent pulses.

To further study the influence of the relative carrier-
envelope phase (CEP) and the time delay between two sub-
pulses on the dissociating nuclear wave packets, we perform
a FT to obtain the nuclear momentum distribution. In order
to keep the wave packets on the grid up to the end of the
simulation, for this analysis we use sets of just two Gaussian
subpulses. In Fig. 4(a) we show the momentum spectra for
τ = 21.0471 fs and φrel = 0 as well as π/2. The spectra are
modulated with a period which is inversely proportional to
the time delay τ between the pulses. In Fig. 4(b) we present
the time delays, extracted from the momentum distributions
(circles), and the relative errors to the actual values (stars)
as a function of the actual time delays as used in a series of
simulations.

Next, we investigate the influence of nuclear dynamics
on the control of two-photon excitations to bound molecular
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FIG. 4. Momentum analysis of the dissociative wave packets
induced by two Gaussian pulses. (a) Nuclear momentum distribution
for two different relative CEPs: φrel = 0 (solid line) and φrel = π/2
(dashed line). (b) Extracted time delay as a function of the actual time
delay (circles and dashed line) and relative error between them (stars
and solid line).
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FIG. 5. Excitation probabilities to the ground vibrational state
(ν2nd = 0, circles and solid line) and the first excited vibrational
state (ν2nd = 1, stars and dashed line) as functions of φ. A spectral
phase modulated field defined in Eq. (4) is used with the following
parameters: α = 1.2024, β = 8Trevival = 85.6682 fs, ω/2 = 5.83 eV,
�ω = 0.1 eV, and I0 = 1 × 1011 W/cm2. The symbols (circles and
stars) are numerical results obtained by solving the time-dependent
Schrödinger equation, while the curves (solid and dashed lines) are
obtained using second-order perturbation theory.

states. As shown above, this dynamics becomes effective for
the present control scheme over the time delay between two
subsequent pulses in a pulse train, since the fundamental
control mechanism is based on the interference between two
electronic wave packets induced by consecutive subpulses.
It is well known from studies in wave-packet interferometry
[13,14] that, in the case of a two-pulse scenario, a control of
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FIG. 6. Two-photon coherent control to a superposition of two
vibrational states. The upper panels show that the electric field
distribution as a function of time [i.e., the Fourier transform of Eq. (4)]
for (a) φ = 0.96π (dark pulse) and (b) φ = 0.46π (bright pulse). The
insets show the central field cycle and the CEP of each subpulse.
In the lower panels the time evolution of the probabilities in the
ground vibrational state (solid line) and the first excited (dashed line)
vibrational state is presented for the (c) dark and (d) bright pulses,
respectively. Also shown is the ionization probability (dashed-dotted
line).
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the excitation probability can be achieved via the pulse delay τ

and the relative phase φrel of the two pulses. For example, the
effective coherent control of the excitation of a superposition
of two vibrational states requires τ = N 2π

E21−E20
= NTrevival

and varying φrel. Here, E2i is the energy of the ith vibrational
level of the second excited electronic state of our model. The
time delays have to coincide with the multiples of the revival
period Trevival of the vibrational wave packet created in the
excited electronic state. This enables the control via efficient
interference of wave packets generated by subsequent pulses,
since the contributions in both vibrational levels of the second
excited electronic state are in phase at these times.

The above analysis for the two-pulse sequence can be
readily applied to the spectral phase modulated fields used by
Meshulach and Silberberg [6] by noting that the modulation
frequency β in Eq. (4) corresponds to the time delay τ between
the consecutive pulses in the train in the temporal domain.
Furthermore, the relative phase φrel between the consecutive
pulses is determined by the modulation phase φ in Eq. (4).
Thus, setting β = NTrevival we expect to achieve an efficient
control pattern by changing φ. To test our expectations,
we do simulations by choosing α = 1.2024, β = 8Trevival =
85.6682 fs, ω/2 = 5.83 eV, �ω = 0.1 eV, and I0 = 1 ×
1011 W/cm2. Note that we have chosen such a narrow
bandwidth that only the lowest two vibrational levels of the
second electronic state can be excited. The results of the
simulations for excitation to these two vibrational states as
a function of the modulation phase φ are shown in Fig. 5.

The same dependence of the two excitation probabilities on
φ clearly confirms our expectations. We also show results
calculated from the second-order perturbation theory (solid
lines) in Fig. 5. Although the coefficient of the transition
amplitude [6,12] is not taken into account in our perturbation
calculations, by normalizing the values from the perturbation
theory to the maximum probability from the TDSE, we can
see a good agreement of results from these two theories.
The temporal analysis of the populations in the vibrational
states (Fig. 6) clearly exhibits the destructive and constructive
interference effects for the subsequent pulses in the train for the
spectral phase modulation of a dark pulse (left-hand column)
and a bright pulse (right-hand column).

To summarize, we have presented a temporal analysis of
two-photon coherent control for the excitation to a dissociative
state and to bound states in a diatomic molecular model system.
We have considered the interaction of these molecular models
with spectral phase modulated pulses, which in the temporal
domain are represented by a train of pulses. In the case of a two-
photon transition to a dissociative state our results have shown
that the excitation probability cannot be controlled because
of the nuclear dynamics in between subsequent subpulses in
the train. In contrast for a two-photon excitation to bound
states, the wave packets generated by the subsequent pulses
can interfere destructively or constructively depending on the
time delay and the CEP difference.
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