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Abstract

We analyse selection rules for the emission of two electrons from the helium atom following

the absorption of a few photons in an intense laser field. The rules arise, as generalization of

the well-studied one-photon case, due to the symmetries of the accessible final states in the

two-electron continuum. We show, in particular, that an increase in the number of absorbed

photons leads to alternating suppression and non-suppression of the back-to-back emission of

the two electrons. Results of numerical simulations using a model of the helium atom are in

agreement with the theoretical predictions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Few-body dynamics involving three (or more) particles

coupled by the Coulomb interaction belong to the most

fundamental processes in atomic and molecular physics.

Among these few-body processes are the ionization of an

atom (e.g., the hydrogen atom) by collisional impact with an

electron [1] and the ejection of both electrons of an atom (e.g.,

the helium atom) following absorption of one [2], a few [3]

or many photons [4]. In particular, the evolution of three (or

more) Coulomb-interacting particles in the continuum after

the break-up of the atomic or molecular system has been

a topic of recurring interest over many years. Nowadays,

detector technology enables researchers to detect the momenta

of two or even more particles in coincidence and, hence, to

measure the differential cross sections of few-body processes

[5]. This development offers the chance for theorists to explore

the importance of symmetry and Coulomb interactions in the

energy and momentum exchange between the constituents

of a few-body system interacting with charged particles or

light.

Despite the complex dynamics of an interacting few-body

system, the final-state distributions of the particles often show

some general structures. In particular, prominent nodes in the

distributions represent restrictions for the correlated momenta

of the outgoing particles. These restrictions arise either due to

the Coulomb repulsion between the charged particles or due to

symmetries (spin, angular momentum, parity, etc) of the final

state of the few-body process. In this respect, the break-up of

an atomic or molecular system following the absorption of a

single photon has been studied in detail. Selection rules for the

correlated electron momenta arising from the symmetry of the

final state have been established for the single-photon double

ionization of the helium atom [6] and molecular hydrogen [7],

as well as the general case of an N-particle break-up following

photoionization [8].

Recent advances in laser technology, namely free-electron

laser facilities [9–11] and high harmonic generation [12], make

possible the observation of the few-photon double ionization of

atoms and molecules [13, 14]. Frequencies and intensities of

these new laser systems restrict the processes to the few-photon

interaction regime, inwhich a small number of channels lead to

the ejection of the two electrons (as opposed to nonsequential

double ionization at Ti:sapphire laser wavelength, which

involves the absorption of a large number of photons from the

field and rescattering effects [4]). Wemay therefore expect that

the final two-electron states in few-photon double ionization

possess a few definite symmetries and that the well-established

selection rules in the single-photon case can be applied to the

few-photon interactions as well.

In this paper, we study the restrictions to the position

and momentum distributions of the emitted electrons in the

continuum following the few-photon double ionization of the

helium atom from the ground state. To this end, we first
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briefly discuss the application of the final-state selection rules,

derived by Briggs and co-workers [6–8], to few-photon double

ionization. We then make use of a model for the interaction of

the helium atom [15] with a laser field to test our expectations

in numerical simulations. In our simulations, we will, in

particular, analyse double-ionization pathways in which up to

four photons are absorbed simultaneously by the two electrons

to overcome the double-ionization threshold.

2. Application of selection rules to few-photon
double ionization

2.1. Selection rules

The symmetries of a state in the two-electron continuum

can lead to nodes in the corresponding configuration space

wavefunction and the correlated momentum distribution [6].

Preparation of a system in an initial state of given symmetry

(e.g., the ground state) as well as the symmetry of the transition

operator (e.g., photon absorption) limits the symmetries of the

final states that can be accessed in a specific process [7]. If

in a transition all accessible final states share one or more

symmetries or final states of different symmetries lead to

the same node(s), there are zero(s) in the differential cross

sections of the corresponding process. These selection rules

have been accurately studied in the theory of the single-photon

double ionization of atoms and molecules and reproduced in

experiments (for a review, see [2]).

In order to identify and apply selection rules for the double

ionization of the helium atom by the absorption of a few

photons, we first briefly review the relevant symmetries of

the final states in the two-electron continuum, as discussed

by Briggs and co-workers (see [6, 7] and references cited

therein). For the specification of the nodes in the configuration

space wavefunction and the correlated electron momentum

distributions, we employ the position vectors r1 and r2 and

the momentum vectors k1 and k2 of the two electrons as well

as the Jacobi coordinates r = r1 − r2 (relative coordinate)

and R = (r1 + r2)/2 (centre-of-mass coordinate) and the

corresponding momentum vectors p = (k1 − k2)/2 and

P = k1 + k2.
3 We will consider double ionization from the

ground state of the helium atom in a linearly polarized laser

field with polarization axis aligned along the quantization axis

of the system, which is chosen to be the z-axis. Furthermore,

energies of the photons will be small enough such that the

photon absorption can be described by an electric dipole

transition. Thus, the quantum numbers M = 0 (projection

of the total angular momentum to the quantization axis) and

S = 0 (total spin) do not change in the cases considered

here.

For single-photon double ionization from the ground state

of the helium atom, which is of 1Seven-symmetry, the transition

into the two-electron continuum leads to exclusive population

of the 1Podd-state. In this case and for linear polarization, three

selection rules have been identified leading to nodes in the

correlated wavefunction and momentum distribution [6]. We

3 We use Hartree atomic units, e = me = h̄ = 1, throughout the paper unless

stated otherwise.

analyse each of these selection rules in viewof their application

to the absorption of more than one photon by the atom.

(1) There is a node in the two-electron wavefunction and

a corresponding vanishing contribution to the correlated

momentum distributions for both r1 and r2 (k1 and k2)

perpendicular to the quantization axis of the system (here,

the polarization axis of the field) if the final state is of odd

parity. Since in dipole transitions the parity of the state

changes, this selection rules applies for the absorption of

either an even or an odd number of photons from the field

depending on the parity of the initial state of the system.

Thus, in the case of double ionization from the ground

state of the helium atom, we expect the corresponding

node to show up for odd-photon processes.

(2) For final states with even S and odd parity (or odd S and

even parity), there appears a node in the configuration

space wavefunction (momentum distribution) for r1 =

−r2 (k1 = −k2), which is equivalent toR = 0 (P = 0).

Since the total spin quantum number S does not change,

while the parity of the state does change in an electric

dipole transition, the selection rules apply again either for

an even-photon or an odd-photon process depending here

on the total spin and the parity of the initial state. For few-

photon double ionization from the helium ground state,

the node appears, as in the case of selection rule (1), if the

number of absorbed photons is odd.

(3) Another node exists for r1 = r2 (k1 = k2) and θ1 = π −θ2
for final states with even S, odd L and odd parity (or, odd

S, even L and even parity). Concerning the total spin

quantum number and the parity, the same considerations

as in the case of selection rule (2) apply. Thus, for

double ionization from the ground state (even S, even

parity and even L), the node is expected to be present for

the absorption of an odd number of photons.

In summary, these selection rules should lead to

alternating suppression and non-suppression of electron

emission for certain configurations in the two-electron

continuum wavefunction and momentum distribution as the

number of absorbed photons increases beyond 1. Our analysis

is based on the assumption that the electron-field coupling

is perturbative, which is justified for the parameter regime

considered in the numerical simulations below [16]. We

may however note that similar conclusions have been drawn

based on an S-matrix analysis of the double ionization of the

helium atom by simultaneous multiphoton absorption in the

nonperturbative intensity and wavelength regime [17]. Note

that we have restricted our discussion above to those selection

rules which are relevant for the most significant case of the

double ionization of the helium atom from the ground state in

a linearly polarized laser pulse. This case will be considered

in the numerical simulations below as well. For an initial

state with different symmetry or a different choice of the field

polarization, other or further symmetry rules may have to be

considered.
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2.2. Numerical model of the helium atom

Following initial achievements towards the solution of the

full time-dependent Schrödinger equation for the helium

atom interacting with an intense laser pulse in view of an

analysis of nonsequential double ionization at optical and near-

infrared laser wavelengths (see [18] and references therein), in

recent years much theoretical interest has been devoted to the

double ionization of atoms by the absorption of two photons

(see [19–23] for most recent studies and references therein).

In the case of the two-photon process, results for the total

cross sections as well as for momentum distributions have

been reported. In particular, the passage from a simultaneous

absorption of the photons (and simultaneous ejection of

the electrons) to sequential double ionization, in which the

absorption of the first photon generates a singly charged ion

before the absorption of the second photon leads to the removal

of the second electron, has been studied.

We are interested in analysing the occurrence of nodes

for particular configurations of the position and momentum

vectors in the probability density and the momentum

distributions in numerical simulations. To this end, we may

make use of any (lower-dimensional) model which exhibits

all or some of the above selection rules. Here, we employ a

model for the helium atom in which the centre-of-mass motion

of the two electrons is restricted to the polarization axis of the

linearly polarized external laser field. The Hamiltonian of this

two-electron model (in Jacobi coordinates) is given by [15]

H (Z, ρ, z; t) =
P 2

Z

4
+ p2ρ + p2z −

PZAZ(t)

c
+

1
√

ρ2 + z2

−
2

√

ρ2/4 + (Z + z/2)2 + a2

−
2

√

ρ2/4 + (Z − z/2)2 + a2
, (1)

where a2 is a soft-core parameter introduced to smoothen the

Coulomb singularity in the numerical computations.

Our model restricts the centre-of-mass motion of the two

electrons along the polarization direction but does not restrict

the symmetry of the dipole transition operator. Thus, the

considerations regarding the symmetries of the accessible final

states discussed above apply in this model as well. In general,

in our model the momentum components of the individual

electron along the polarization direction differ and therefore

both equal and unequal energy sharings occur. But, along

Z = 0 and PZ = 0 only equal energy sharing is present in

the model. This coincides with the kinematics for the nodes

according to selection rules (2) and (3), which are predicted to

occur for equal energy sharing. Thus, for these two selection

rules, the model captures the relevant dynamics. Selection

rule (1) can occur for special cases of unequal momentum

components in the transverse direction as well, which is not

captured by the present model and is a restriction in view of

the present analysis. Moreover, in our model, the node arising

due to selection rule (3) coincides with that due to selection

rule (2). Thus, in the remainder of the paper, we will mainly

discuss our results in view of selection rule (2).

In the actual computations, the time-dependent

Schrödinger equation of the two-electron model is solved

using the Crank–Nicolson method. The initial ground

state wavefunction 9(Z, ρ, z, t = 0) is computed through

imaginary time propagation using a grid size of 1ρ = 1z =

1Z = 0.3 and a2 = 0.135. The field-free ground state

energies of the helium atom and helium ion are found to

be −2.937 and −1.985, respectively, which are both close

to the real values of −2.904 and −2. The propagation of

the wavefunction in the field is conducted using a box size

with Nρ = 300, Nz = 600 and NZ = 300 points in the

respective directions. An absorbing boundary of the form

cos1/6
(

π
2

|x−x0|

L

)

with |x| > |x0|, spanning 10% of the box size

in a certain direction, is used. x0 denotes the border of the

boundary region and L its width.

3. Nodes in probability and momentum distributions

In this section, we present the results of a series of numerical

simulations based on the model presented above. In our

calculations, we change the wavelength and peak intensity

of the laser pulse such that the double-ionization process can

proceed via the simultaneous absorption of one up to four

photons. The wavelengths are chosen such that the probability

for sequential double ionization is small (or negligible) in each

of the cases considered. In each of the computations, we use

a sin2-pulse with a total length of six cycles.

3.1. One-photon double ionization

First, we consider a central laser wavelength of 14.32 nm

and a peak intensity of I0 = 1 × 1014 W cm−2. At this

wavelength, the photon energy of 3.182 au exceeds the double-

ionization threshold of our model He atom and the two

electrons can be emitted after the absorption of a single photon.

Figure 1 shows snapshots of the probability density distribution

|9(Z, z, ρ; t)|2 integrated over ρ (left-hand panels) or z (right-

hand panels) at time t = 10 au after the end of the pulse. The

plots in the column on the left show distributions in the Z–z

plane (integrated over the ρ-coordinate). In these plots, the

contributions at the centre (z ≈ Z ≈ 0) mainly correspond

to the remaining population in the neutral helium atom after

the interaction. This can be clearly seen from the comparison

of the plots in the upper and lower panels in the left-hand

column, since the He ground state contribution is removed in

the results in the lower panel. The single ionized population

is displayed along the diagonals, while the contributions to

double ionization can be found in the regions in between

the diagonals. We clearly see a node along Z = 0 in the

distribution, as predicted by selection rule (2) and shown by

Briggs and co-workers before [6]. In the previous analysis of

single-photon double ionization usually asymptotic final states

(in time-independent S-matrix calculations) were considered;

the present results offer a time-dependent view. It is seen from

the results in figures 1 and 2 (the latter shows the distributions

at two later time instants) that the node is present as soon as

the pulse is over.

The plots in the right-hand columns of figures 1 and 2 offer

the complementary view of the Z–ρ distributions, integrated
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Figure 1. Probability density distribution (on a logarithmic scale) as a function of z and z (integrated over ρ, left-hand column) and as a
function of ρ and z (integrated over z, right-hand column) following single-photon double ionization. In the results, presented in the panels
in the lower row, the ground state wavefunction was removed before calculating the probability density distribution. The snapshots are taken
at t = 10 au after the end of the laser pulses. Laser parameters: wavelength λ = 14.32 nm, peak intensity I0 = 1× 1014 W cm−2 and total
pulse length six cycles.

Figure 2. Same as figure 1 but at times t = 20 au (upper row) and t = 30 au (lower row). Shown are the probability density distributions
after the removal of the He ground state from the full wavefunction.

over z. While the distributions at small ρ are mainly due to
contributions from the neutral He atom and the He+ ion, the
population at large ρ indicates a highly correlated process, i.e.
double ionization. Again, in all of the plots we see a node
at Z = 0 for the contribution belonging to double ionization,
as expected from selection rule (2) and the earlier work on
single-photon double ionization [6].

3.2. Two-photon double ionization

Next, we consider two-photon double ionization, for which

we expect that the node at Z = 0 is not present according

to the selection rules. The simultaneous absorption of two

photons does occur either as a second above-threshold double-

ionization peak (ATDI, [17]) at higher intensities in the

4



J. Phys. B: At. Mol. Opt. Phys. 44 (2011) 175601 H Ni et al

Figure 3. Probability density distribution (on a logarithmic scale) as a function of z and z (integrated over ρ, left-hand column) and as a
function of ρ and z (integrated over z, right-hand column). The ground state wavefunction was removed before calculating the probability
density distribution. The snapshots are taken at the end of the pulse (upper row) and t = 10 au after the pulse (lower row). Laser
parameters: wavelength λ = 14.32 nm, peak intensity I0 = 1× 1016 W cm−2 and total pulse length six cycles.

Figure 4. Same as figure 3, but at I0 = 1× 1017 W cm−2 and t = 7.5 au after the end of the pulse.

wavelength regime considered above, or at longer wavelengths

at which the photon energy is smaller than the double-

ionization threshold. In our simulations, we have analysed

both cases.

First, we present in figure 3 results at the samewavelength

as above but at a higher peak intensity of I0 = 1 ×

1016 W cm−2. While in the z–Z distribution taken at the

end of the pulse (panel in the upper-left corner) the evolving

population in the double-ionization region does not show a

clear structure, we can distinguish the contributions from

single-photon and two-photon double ionization at some later

time after the end of the pulse (t = 10 au, panel in the lower-

left corner). Note that due to the difference in total kinetic

energy, the single-photon contribution propagates at a smaller

velocity than the two-photon contribution. Consequently,

we find the latter contribution at larger distances from the

centre of the z–Z distribution (i.e. the nucleus) than the one-

photon distribution. Our expectations for the contribution

along Z = 0 are obviously realized in the numerical results

for the z–Z distribution (lower panel in the left-hand column):

the absorption of two photons results in a maximum in the

corresponding part of the distribution, while the node in

the single-photon contribution is still present. In the Z–ρ

distributions (panels in the right-hand column), there is no

clear separation of the two processes possible and, hence, we

observe a small population alongZ = 0 due to the two-photon

process.

Similar conclusions hold for the results at an even higher

intensity of I0 = 1 × 1017 W cm−2, shown in figure 4. Here

the contribution from the two-photon absorption (secondATDI

peak) with a maximum along Z = 0 in the Z–z distribution

is much stronger, as expected due to the nonlinearity of the
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Figure 5. Probability density distribution (on a logarithmic scale) as a function of z and z (integrated over ρ, left-hand column) and as a
function of ρ and z (integrated over z, right-hand column). The snapshots are taken t = 30 au after the pulse. Laser parameters: wavelength
λ = 28.64 nm, peak intensity I0 = 1× 1014 W cm−2 and total pulse length six cycles.

Figure 6. Probability density distribution (on a logarithmic scale) as a function of z and z (integrated over ρ). The snapshots are taken
t = 12.25 au after the pulse. Laser parameters: wavelengths λ = 42.96 (left-hand column) and 57.28 nm (right-hand column), peak
intensity I0 = 5× 1014 W cm−2 and total pulse length six cycles.

process. A clear separation of the single-photon process from

the two-photon process is however no longer possible on the

grid size used in the present simulations.

Next, we double the central wavelength of the laser field

to λ = 28.64 nm (photon energy of 1.591 au). At this

wavelength the (simultaneous) absorption of two photons

is needed to overcome the double-ionization threshold.

Note that the photon energy has been chosen such that

a competing sequential double-ionization process requires

the absorption of at least three photons and, hence, the

corresponding contribution to the two-electron configuration

space wavefunction is strongly suppressed. The results in

figure 5 do not show a node along Z = 0 neither in the

Z–z nor in the Z–ρ distribution, in agreement with selection

rule (2) for a two-photon process from the He ground state.

Instead, we observe as in the previous results in figures 3

and 4 a maximum in the contributions belonging to double

ionization along this axis in the Z–z distribution. Note that

themaximum indicates a preferential back-to-back emission of

the two electrons at the present laser parameters, in agreement

with recent observations in experiments on the two-photon

double ionization of He [24] and Ne [25], as well as recent

theoretical predictions [26].

3.3. Three- and four-photon double ionization

Finally, we consider double-ionization processes via the

simultaneous absorption of more than two photons in order to

verify (or, disprove) the alternating appearance of suppression

and non-suppression of electron emission along the z-axis in

the configuration space wavefunction for double ionization as

the number of absorbed photons increases. We found that at

longer wavelengths, the contributions of competing processes

such as sequential double ionization are usually of similar

(or even larger) strengths than the probability for the ejection

of two electrons via the simultaneous absorption of photons.

However, at specific wavelengths (and peak intensities), here

42.96 and 57.28 nm, we observe double ionization which

arises from simultaneous three- and four-photon absorption.

The results of the numerical simulations (see figure 6) clearly

exhibit the suppression (for the odd-number-photon process)

and the non-suppression (for the even-number-photon process)

of electron emission along the Z = 0 axis in the Z–z

distributions, as expected from selection rule (2).

3.4. Momentum distributions

As of now, we have demonstrated the selection rules in the

configuration space of the two electrons. At the same time, the
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(a) (b) (c)

Figure 7. Correlated momentum distribution of pz and PZ (upper row) and momentum distribution in PZ (lower row, integrated from upper
row over pz). Laser parameters: wavelengths λ = 14.32 (columns (a) and (b)) and 28.64 nm (column (c)), peak intensities I0 = 1× 1014

(columns (a) and (c)) and 1× 1016 W cm−2 (column (b)) and total pulse length six cycles.
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Figure 8. Ratio of the probability at PZ = 0 to the maximum probability in the PZ distributions as a function of intensity at a wavelength of
14.32 nm.

selection rules also apply to themomentum space distributions.

As discussed above, when there is a node in the configuration

space, there should be a corresponding node in the momentum

space, and when there is an antinode in the configuration

space, there should also be a corresponding antinode in the

momentum space. Due to the lower dimensionality of our

numerical model, we cannot provide quantitative predictions

for the full momentum distributions but test certain aspects,

here the existence of nodes.

Figure 7 shows correlated momentum distributions for

the two electrons in the PZ–pz plane (upper row, integrated

over the pρ direction) and along the PZ-axis (lower row,

integrated over both pz and pρ). The momentum distributions

are obtained by first separating the doubly ionized part of the

configuration space wavefunction from the rest. To this end,

we partition the coordinate space as [15]

r1 < 12 and r2 < 12 : He atom

r1 < 6 and r2 > 12 or r1 > 12 and

r2 < 6 : He+ ion

complementary space : He2+ ion,

where r1,2 =
√

ρ2/4 + (Z ± z/2)2. Then, we project the

doubly ionized part onto the final state wavefunction, which

we approximate by a product state of a Coulombwavefunction

7
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in the relative coordinates ρ and z and a plane wave in the

centre-of-mass coordinate z.

The momentum distributions displayed in the three

columns correspond to the probability density distributions:

(a) in the lower row of figure 2, in which the single-photon

process dominates,

(b) in the lower row of figure 3, in which both one- and two-

photon processes are present, and

(c) in figure 5, in which the two-photon process is prominent.

It is obvious from the comparison of the results in figure 7

with the corresponding spatial distributions that both show the

same nodes and antinodes. In particular, the nodes for the

odd-number photon processes along Pz = 0 in the PZ–pz

distributions (upper row of figure 7) can be clearly seen. We

have found that the appearance of the nodes is insensitive to

the method by which we extract the ionized population from

the full wavefunction. It is also independent of how long

the wavefunction is propagated after the end of the pulse and

of the choice of the basis set for the two-electron continuum

wavefunctions.

Comparing the momentum distributions in columns (a)

and (b), we find that the contribution of the two-photon process

increases with intensity at the wavelength of 14.32 nm. This

can be quantified by the ratio of the probability at PZ = 0 to

the maximum probability in the PZ distributions (lower row

in figure 7), as shown in figure 8. One can see that the ratio

increases almost linearly as a function of intensity. This is

expected since the ratio basically represents the ratio between

the probabilities for one- to two-photon absorption, which

should follow the power law I 2/I 1 = I 1.

4. Conclusions

In summary, we showed that the well-known selection rules

for single-photon double ionization can be generalized to

the emission of two electrons following the simultaneous

absorption of a few photons from an intense laser pulse.

These selection rules, which arise due to the symmetries

of the accessible final states in the two-electron continuum,

correspond to nodes in the configuration space wavefunction

and the correlated momentum distributions. In particular, the

back-to-back emission of the two electrons is alternating either

suppressed (forbidden) or non-suppressed as the number of

absorbed photons increases. The theoretical predictions are

tested well in numerical simulations using a model of the

helium atom from the ground state. The numerical results

for one- to four-photon double ionization clearly show the

presence of the node in the back-to-back emission in the case

of odd-number photon processes.
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