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We investigate the coherent control of nonresonant two-photon excitation and (2 4 1) photon ionization
processes from the time-dependent perspective. To this end, we have solved the time-dependent Schrédinger
equation for a hydrogen atom interacting with an ultraviolet laser field. Results are obtained for symmetric and
antisymmetric phase distributions leading to dark and bright pulses, for which the temporal field distributions
consist of many subpulses. For the two-photon excitation process, it is found that at intermediate time between the
subpulses, the population in the excited state can exceed the final state population and, in particular, is nonzero
for dark pulses. The results for the (2 + 1) photon ionization closely follow those for the excitation process,
which shows that the ionization of the electron proceeds as a resonant process via the excited state in all cases

considered.
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I. INTRODUCTION

In recent years, it has become possible to change phases,
amplitudes, and polarization of the different frequency com-
ponents of a large-bandwidth laser pulse. Because of this
development in laser technology, ultrashort laser pulses are
nowadays an effective tool to steer quantum processes [1—4].
A variety of control schemes in atoms and molecules have been
proposed and demonstrated [5—7]. Some of the applications of
coherent control are to control a chemical reaction, to learn
about interatomic forces in a molecule, and to create novel
stable or metastable molecules [3].

The central idea of coherent control is to either maximize
or minimize the probability of a quantum transition between
an initial and a final state. Significant progress has been
made in the understanding of few-photon coherent control
schemes in the perturbative intensity regime. For example,
for a two-photon absorption in atoms, induced by an ultrashort
laser pulse, one can make use of the interference among various
pathways with w; + w, = wg between two (bound) states [8].
Here w; and w, are the energies of two photons within
the bandwidth of the pulse, and wy is the transition energy
between the states. The two-photon absorption probabilities
can be tuned to zero (destructive interference) or maximum
(constructive interference) by modifying the spectral phase
of the pulse. The corresponding pulses are often called dark
and bright pulses, respectively. Dark pulses for annihilating
the signal of a nonresonant two-photon excitation in an
atom have been realized in experiment [4,9]. Extensions of
this initial study to form bright [10] as well as dark pulses
[11] for resonant two-photon excitation processes have been
proposed. Furthermore, a (2 4+ 1) photon scheme, in which
an intermediate state is reached by a two-photon excitation, to
control a three-photon excitation process has been investigated
in experiment as well as theory [12—14]. Efforts to analyze
quantum control at nonperturbative strong-field intensities
[15-17], with shaped femtosecond laser-pulse sequences [18]
and for multiphoton ionization [19], have been done recently.

Usually, these few-photon coherent control schemes are
analyzed in the frequency domain (e.g., [4]). This provides
the opportunity to understand the control over the transition
probability in terms of interference effects between different
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pathways. Since the transitions are driven by an ultrashort laser
pulse, it is, however, illustrative to examine the time evolution
of these few-photon control schemes as well (e.g., [20-22]).
Such an analysis can offer complementary information about
the control mechanisms from a direct comparison of the time
evolution of the laser field with the instantaneous response of
the quantum system.

In this article, we investigate the coherent control of a
nonresonant two-photon excitation and a (2 4 1) photon ion-
ization process from the time-dependent perspective. To this
end, we have solved the time-dependent Schrodinger equation
for the hydrogen atom interacting with a shaped ultrashort
uv laser pulse on a grid. We have chosen the hydrogen atom
for this conceptual study since the corresponding numerical
solution of the Schrodinger equation can be performed within
dipole approximation without further restrictions. The general
results of our investigation are, however, applicable for similar
transitions in other atoms and at other wavelengths as well.

In the next section, we briefly discuss the control schemes
considered in the present study and their applications to the
hydrogen atom. We also outline the theoretical method used
to obtain the numerical results. In Sec. III A, we present our
results on the symmetric and antisymmetric phase control of
a two-photon excitation from the ground state of hydrogen
to the first excited (2s) state. Jointly with these results, we
will analyze the (2 4 1) photon ionization of the H atom via
the 2s state and discuss similarities in the time evolution of
the transition probabilities of both processes. In Sec. III B,
we consider control of the same processes by pulses with a
m-phase step. The article ends with some concluding remarks.

II. COHERENT CONTROL OF EXCITATION AND
IONIZATION IN THE HYDROGEN ATOM

In this section, we first discuss the application of two
coherent control schemes to the hydrogen atom, namely, the
excitation from the ground state to the first excited state
by absorbing two photons and the three photon ionization
mediated via the two-photon resonance with the 2s state. Then
we briefly present the numerical method used to analyze the
time evolution of the coherent control processes.

©2010 The American Physical Society
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FIG. 1. Control schemes for nonresonant two-photon excitation
and (2 4+ 1) photon ionization of a hydrogen atom; n denotes the
principle quantum number of the eigenstates of the hydrogen atom.

A. Application of control schemes to the H atom

Since numerical solutions of the corresponding Schrédinger
equation can be performed on a grid for the hydrogen atom,
we have considered this simplest atom for our analysis of
the time evolution of few-photon coherent control schemes.
In order to study the two-photon excitation and three-photon
(2 + 1 photon) ionization process at the same time (cf. Fig. 1),
we consider a 243.5 nm uv pulse. The corresponding photon
energy of 5.1 eV is half the transition energy (10.2 eV) from the
ground state (1s) to the first excited state (2s) of the hydrogen
atom. The probability for a two-photon excitation to the
2s state is much larger than that to the 2p state because of
the selection rule. Three-photon ionization from the ground
state (1s) to the continuum can be induced as well since the
energy of three photons (15.3 eV) is larger than the ionization
potential (13.6eV).

In our calculations, we consider pulses with a spectral
bandwidth of 0.4 eV, which corresponds to a pulse duration
of 8 fs (full width half maximum) for a transform-limited
pulse. With such a bandwidth, there are a lot of coherent
pathways for the nonresonant two-photon excitation to the
2s state, while an excitation to the next excited state (3s) with
atransition energy of 12.1 eV will not be induced. On the other
hand, the ionization to the continuum can proceed either as a
(2 + 1) photon process via the 2s state or as a nonresonant
three-photon ionization process.

B. Numerical method

In order to investigate the time evolution of the excita-
tion and ionization processes, we solve the time-dependent
Schrodinger equation for the hydrogen atom interacting with a
linearly polarized laser pulse on the grid. Because of rotational
symmetry over the polarization axis (chosen here as the z axis),
the Hamiltonian of the system in dipole approximation and
velocity gauge can be written as follows:

2 2
p; P 1 P AR)
H(p,z,t)=71+7'°+ ——-— (D
Vortzo+a ¢

where z, p and p., p, are the coordinates and corresponding
momenta of the electron parallel and perpendicular to the
polarization direction of the laser; a? = 0.001 is a soft-core
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Coulomb parameter and A() = —c fot E(t)dt is the vector
potential for the electric field E(t). The time-dependent
Schrodinger equation is solved using the Crank-Nicholson
method. The wave functions of the ground, the first, and
the second excited states are obtained by imaginary time
propagation without the field. The corresponding energies are
—13.6eV, —3.4¢eV, and —1.5eV, which agree well with the
exact analytical values. A grid with N, = 400 and N, = 1000
points and spacings of Ap = Az = 0.1 au as well as a time
step of At = 0.02 au has been used in the calculations. A cos”
mask function has been applied at the edges of the grid to
absorb the outgoing part of the wave packet. Simulations have
been performed up to about 10 fs after the end of the pulse.
We have considered a peak intensity of the transform-
limited pulse of 4.6 x 10'> W/cm?, which is in the pertur-
bative intensity regime and can be obtained in experiments.
Such a perturbative field strength allows us to evaluate the
temporal population of the excited states by projecting the
time-dependent wave packet onto the eigenwave functions
of unperturbed excited states during the interaction with the
pulse. The population of the 2s state represents the two-photon
excitation probability of present interest. We define the three-
photon ionization probability as the absolute square of the
outgoing part of the wave packet, absorbed at the edges of the
grid. The validity of this method to accumulate the ionization
yield via absorption at the boundaries will be discussed later.

III. TIME EVOLUTION OF FEW-PHOTON COHERENT
CONTROL PROCESSES

On the basis of second-order time-dependent perturbation
theory [23], two useful schemes for controlling nonresonant
two-photon excitation processes by modifying the spectral
phase of the pulse have been proposed and demonstrated,
namely, via a symmetric or antisymmetric phase distribution
[4] and by a m-phase step [9]. We consider different phase
distributions for both cases and analyze the time evolution of
the excitation probability to the 2s state and of the ionization
probability.

A. Symmetric and antisymmetric phase control

For the case of a symmetric or antisymmetric phase
distribution, we write the electric field in the frequency domain
as [4]

E (0)0 + Q) = E, sech 1.76%2
2 -0 Aw

) explic cos (B2 + ¢)],

2)

where Aw is the bandwidth of the pulse and «, §, and ¢ are
the modulation depth, frequency, and phase, respectively. We
keep B = 21 fs as a constant, while « and ¢ are modified to
shape the pulse; ¢ = 0 and 7 /2 correspond to symmetric and
antisymmetric spectral phase distributions, respectively.
Before we analyze the time evolution, in Figs. 2 and 3,
we present the final two-photon excitation probabilities to the
2s state and the three-photon ionization probabilities at the end
of the pulse as functions of the modulation depth o (Fig. 2)
for ¢ = 0 (circles and solid lines) and ¢ = /2 (squares and
dash-dotted lines), respectively, and of the modulation phase
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FIG. 2. (a)Population of the 2s state and (b) ionization probability
as a function of @ with ¢ = 0 (solid line and circles) and ¢ = 7 /2
(dash-dotted line and squares).

¢ for o = 1.2 (Fig. 3). We note that the general dependence
of the results for the two-photon excitation probabilities on
the two parameters agrees well with the data measured in the
experiment but for the 6S/,-8S), transition in Cs [4]. This
shows that the present numerical method can be applied to
analyze the coherent control schemes in the hydrogen atom,
while the results will provide insights into such processes more
generally.

We see that the theoretical predictions for the three-
photon ionization probabilities follow closely the trend of
the excitation probabilities in each of the cases considered.
For a symmetric spectral phase (¢ = 0; Fig. 2, circles and
solid lines), both the probabilities vary strongly as « increases
and are at minimum (indeed equal to zero for the excitation
probability after subtracting the numerical error in the calcu-
lations) for certain values of «. For an antisymmetric spectral
phase (¢ = m/2; Fig. 2, squares and dash-dotted lines), the
excitation probability maintains almost the same value as the
transform-limited pulse as « increases. Fixing o = 1.2, both
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FIG. 3. (a)Population of the 2s state and (b) ionization probability
as a function of ¢ with o = 1.2.
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the probabilities can be changed over a large scale from almost
zero to the value obtained for a transform-limited pulse for a
variation of the phase between 0 and 2 (Fig. 3).

According to perturbation theory, the amplitude of the
(2 + 1) photon transition to a higher excited state is propor-
tional to that of the two-photon excitation to a lower excited
state [12]. Similar trends of the excitation and ionization proba-
bilities in our calculated results (Figs. 2 and 3) indicate that the
(2 + 1) scheme can be applied for ionization to the continuum
as well. The maximum ionization probabilities are around
20 times smaller than the excitation probabilities, indicating
the low probability to absorb the third photon at these
intensities. We note that the ionization probability cannot be
turned to zero at the same control parameters as the excitation
probability. A similar phenomenon has been seen before for
a (2 + 1) photon excitation process [12,13]. In that case, the
nonzero probabilities have been explained by nonnegligible
contributions of the nonresonant three-photon pathway to
the transition amplitude. Subsequently, we will provide a
time-dependent analysis for this process, which provides an
alternative explanation in the present case.

We now turn to the analysis of the results for the excitation
and ionization probabilities as a function of time. The field
of the shaped pulse as a function of time E(¢) is obtained by
Fourier transform of E(w). Variation of the control parameters
o and ¢ changes the temporal distribution of the electric field
strength and the carrier to envelope phase (CEP). For example,
the temporal distribution shows only one pulse for o =0
(transform-limited pulse), while there are many subpulses
with different peak field strengths for nonzero «o [e.g., cf.
Fig. 4(a)]. The field strength E; and CEP change between
adjacent subpulses j and j + 1; that is,

Eji(t 4 At = 1 Ej(0) exp(i @y ), 3)

field strength (a.u.)

population of 2s
|
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FIG. 4. Comparison of the time evolutions of (a) the electric field
strength, (b) the population of the 2s state, and (c) the ionization
probability for an antisymmetric phase distribution (¢ = 7 /2) at
o = 1.2. Insets of (a) show enlarged views on the central cycles
of the first three subpulses shown in the figure. The solid and dashed
lines indicate the onsets of increases in the excitation and ionization
probability, respectively. Note that there is a time delay of about 4 fs
between the onsets.
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where ¢4 ; denotes the ratio of the field strengths, ® ;. ; is
the difference in the CEP, and At is the time delay between two
adjacent subpulses; ¢;41,; and At depend on the modulation
depth o only, while the CEP difference ® ;. ; can be tuned
by varying the modulation depth « and the spectral phase ¢.

On the basis of second-order perturbation theory, the
two-photon transition amplitude a;(z) between two bound
states induced by the jth pulse is proportional to the square of
field strength £73(z); hence

aji(t + A = ciyy a;(1)expRi®j ). 4)

Hence the two-photon excitation probability induced by two
adjacent subpulses is given by the absolute square of the
coherent superposition of the corresponding amplitudes:

2
[1+c), . +2¢5,, c0sQPip )] (5)

2 aj
|aj+1, ]| ‘ \/5
There is a predominantly constructive interference for 0 <
@41, < m/4 (with completely constructive interference for
¢jy1,j=1and ®;;; =0) and predominantly destructive
interference for w/4 < ®;; ; < w/2 (with completely de-
structive interference for ¢4 ; =1 and @1 ; = 7/2). As
a function of time, we therefore expect that the excitation
probability will steadily increase as long as the interference
between the adjacent subpulses is constructive, while the
population in the excited state will fluctuate if the interference
is destructive.

InFigs. 4 and 5, we present the field strength, the population
of the first excited (2s) state, and the ionization probability
as a function of time for @« = 1.2. A comparison for an
antisymmetric (¢ = /2; Fig. 4) and symmetric (¢ = 0;
Fig. 5) phase distribution is shown. These cases correspond
to the maximum (bright pulse) and minimum (dark pulse)
final transition probability, respectively (cf. Fig. 3).

For the antisymmetric phase distribution, the CEP dif-
ference is equal to zero for adjacent pulses [cf. insets
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FIG. 5. Same as Fig. 4, but for a symmetric spectral phase
distribution (¢ = 0) at o = 1.2. The dashed lines indicate the
onsets in the ionization probability, while the solid lines indicate
the corresponding times, taking into account the 4 fs time delay
between detection of excitation and ionization in the present
calculations.
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of Fig. 4(a)], indicating a constructive interference of the
excitation amplitudes. This is in agreement with the numerical
results [Fig. 4(b)], which show that the population in the
2s state increases stepwise whenever the atom interacts with
one of the subpulses. At the end of the last subpulse, it reaches
a value almost equal to that induced by the transform-limited
pulse. The ionization probability follows the trend of the
excitation probability [Fig. 4(c)]. Note that there is a time
delay between the onset of the increases in the curve of the
ionization probability (indicated by dashed lines) as compared
to those in the curve for the excitation probability (indicated
by solid lines). The time delay is due to the fact that we define
ionization of the atom via the absorption of the wave packet at
the boundaries of the grid. Considering the kinetic energy of
the ionizing electron (15.3-13.6eV = 6.25 x 1072 au) and the
extension of the grid along the polarization direction (50 au),
arough classical estimate yields that the ionizing wave packet
needs about 4 fs to propagate from the center of the grid (i.e.,
the nucleus) to the boundaries. This estimation agrees well
with the time delay seen in the results. From the results for the
time evolution of the ionization probability [Fig. 4(c)], we see
that it depends on the population in the 2s state as well as the
field strength. This is in agreement with the expectation that
at these field strengths, the ionization of the electron proceeds
as a (2 4 1) photon transition via the 2s state. There is no
signature for a contribution of the nonresonant three-photon
transition to the continuum seen in the data.

In the case of the symmetric phase distribution, the
difference between the CEPs of adjacent subpulses is equal
to w/2 [cf. insets of Fig. 5(a)]. Therefore the two-photon
excitation amplitudes induced by adjacent subpulses interfere
destructively. This trend is reflected in the time-dependent
population of the 2s state [Fig. 5(b)]. It rises during the first
subpulse and then decreases to zero during the first part of
the following subpulses, while it rises again over the second
part of the subpulses. Finally, it drops to zero at the end of
the last subpulse. Since the field strengths in the adjacent
pulses differ (c;41,; # 1), there is no complete destructive
interference between the amplitudes, and the 2s population is
nonzero at intermediate time between the subpulses.

From the results for the time evolution of the ionization
probability [Fig. 5(c)], we see that each onset of the increases
corresponds to instants (considering the time delay discussed
earlier) when the electric field is rather weak but the excitation
probability is high. We therefore conclude that the ionization
primarily depends on the population in the 2s state. This is in
agreement with our preceding interpretation that at these field
strengths, the ionization of the electron proceeds viaa (2 4 1)
photon process. Note that the final ionization probability is
nonzero, which is due to the nonzero population of the excited
states at intermediate time.

As discussed earlier, we identify the ionization process
as a (24 1) process, that is, a single-photon process from
the excited 2s state, by relating the onsets in the ionization
probability to those time instants at which the excitation
probability in the 2s state is high. In case of a nonresonant
three-photon ionization, which is a nonlinear process, the rises
in the ionization probability should clearly correlate to the
maxima in the field strength. In particular, for the so-called
dark pulse, this is not the case, and we therefore rule out any
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TABLE I. Comparison of the ionization probabilities, calculated
via absorption at the boundaries (first line) and via the projection
method [Eq. (6), second line], at an intermediate time after two
adjacent pulses. Parameters are the same as in Figs. 4 and 5.

Grid size Pon (Fig. 4) Pion (Fig. 5)
400 x 1000 233 x 107 1.45 x 10-°
2000 x 6000 2.43 x 1076 1.46 x 10~

(significant) contribution of the nonresonant process in the
present cases.

We further note that in the case of a (24 1) photon
ionization process, we do not expect a destructive interference
effect between the ionizing wave packets created by adjacent
subpulses. In order to test our expectation, we have repeated
some of the calculations on a larger grid (N, = 2000 and
N, = 6000 points), which enabled us to keep the whole wave
function on the grid well after the second pulse (without any
absorption at the boundaries) for the results presented in Figs. 4
and 5. At an intermediate time f;,; after the second subpulse,
we calculated the ionization probability by

\p(pszvtint)

Pon(tint) = / dz dpp

2

= > < bulV(p.2utin) > G| . (6)
nl

where W (p,z,tin) is the time-dependent wave function at
and ¢, is the (n,[)th eigenstate of hydrogen atom. In Table I,
the results of these calculations are compared with those
obtained on the small grid via the absorption of the wave
packets at the boundaries for the parameters in Figs. 4 and 5. As
expected, the results agree well with each other, which implies
that interference effects between adjacent wave packets do not
play a role and justifies the definition of the ionization yields
via absorption at the boundaries in the present cases.

We also considered a symmetric phase distribution (¢ = 0)
but « = 1.9 (Fig. 6), at which a local maximum in the
excitation probability as a function of « is found (cf. Fig. 2).
The final excitation probability is, however, smaller than that
for the transform-limited pulse. The CEP differences indicate
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FIG. 6. Same as Fig. 4, but for¢ =0 and ¢ = 1.9.
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in this case a partial destructive or constructive interference
between adjacent subpulses. Hence the time evolution of the
population in the 2s state shows a more complex pattern than in
the previous cases. Interestingly, at certain intermediate times,
the probability of finding the electron in the excited state is
larger than the final transition probability. On the other hand,
the temporal evolution of the ionization probability can be
explained as before; that is, the larger the population in the
2s state and the larger the field strength, the stronger is the
increase in the ionization probability.

B. Step control in the & phase

For the second case, namely, a phase distribution with a
m-phase step, the electric field strength in the frequency

domain can be written as [9]
1.76Q2
E<% + Q) = Eosech< A ) exp |:isgn(Q — 8)%1|,
(7N

where sgn(x) = £1 according to the sign of x and § is the
phase step position, which is the control parameter to shape
the pulse. As a function of time, the field strength can be

written as
~ (T ~ (T .
E (E + t> =F (5 — t) exp(i ®), (8)

where 7 is the full pulse duration and & is the CEP
difference between the two parts of the pulse. The two-photon
excitation probability induced by the two parts will therefore
constructively or destructively interfere, depending on the
value of ®.

The numerical results for the two-photon excitation proba-
bility in the hydrogen atom as a function of the w-phase step
position [Fig. 7(a)] agree well with the experimental data and
theoretical predictions found in Cs [9]. There is a minimum
at § = £0.31 (equal to zero after subtracting the numerical
error), corresponding to a dark pulse. As in the case of the
symmetric and antisymmetric phase control, the dependence
of the three-photon ionization probability on the phase step
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population of 2s
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0
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FIG. 7. (a)Population of the 2s state and (b) ionization probability
as a function of -phase step position §.
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FIG. 8. Comparison of the time evolutions of (a) the electric field
strength, (b) the population of the 2s state, and (c) the ionization
probability at the local maximum (6 = 0).

position [Fig. 7(b)] is very similar to that of the two-photon
excitation probability.

The results for the time evolution of the population in the
2s excited state and of the ionization probability confirm the
conclusions drawn earlier. For § = 0 (Fig. 8), the CEP differ-
ence between the two parts of the electric field [Fig. 8(a)] is
zero; hence the interference is constructive and the two-photon
excitation probability is steadily increasing [Fig. 8(b)]. The
ionization probability [Fig. 8(c)] follows the trend and shows,
as expected, strong increases if the instantaneous excitation
probability is high and the field strength is large. In contrast,
for 6 = 0.31 (Fig. 9), the CEP difference between the two
parts of the electric field is 7 /2 [Fig. 9(a)] and the interference
is destructive. Therefore the excitation probability [Fig. 9(b)]
increases during the first part and decreases to zero over the
second part of the pulse. The ionization probability [Fig. 9(c)]
increases over the first part of the pulse and remains almost a
constant over the second part, as the excitation probability
decreases. These results suggest as well that the nonzero
ionization probability is because of an intermediate population
of the 2s state rather than a contribution of the nonresonant
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FIG. 9. Same as Fig. 8, but at the minimum (6 = 0.31).
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FIG. 10. Same as Fig. 8, butat § = 0.5.

three-photon pathway. Finally, we present in Fig. 10 the time
evolutions for an intermediate case, namely, § = 0.5. The
CEP difference between the two parts of the electric field
is between zero and /2, indicating partial destructive or
partial constructive interference. As in the previous section,
the time-dependent population in the 2s state [Fig. 10(b)] is
fluctuating over the second part of the pulse with intermediate
probabilities even slightly larger than the final probabilities.
Correspondingly, the ionization probability shows a stepwise
increase.

IV. CONCLUDING REMARKS

To summarize, we have studied few-photon coherent
control schemes from the time-dependent perspective. To
this end, we have solved the time-dependent Schrédinger
equation for the hydrogen atom interacting with shaped
linearly polarized laser pulses. The probabilities for non-
resonant two-photon transition to the 2s state and (2 + 1)
photon ionization to the continuum have been evaluated as
a function of time. For different phase distributions, the results
for the excitation probabilities are found to agree well with
previously published experimental data (taken in Cs). It is
found that the time-dependent analysis offers complementary
information about the control mechanism as compared to
studies in the frequency domain. The maxima (minima) in
the final excitation probabilities are because of constructive
(destructive) interferences between the amplitudes induced by
different subpulses. At intermediate time, the population in the
excited state is found to be nonzero, even for dark pulses, and
may exceed the final transition probability. Our results for the
ionization probabilities are found to depend on the degree of
excitation in the 2s state and the field strengths. This indicates
that at the present field parameters, the ionization proceeds
via a resonant (via the 2s state) rather than a nonresonant
process.
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