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Abstract. We apply and analyze the concept of mapping ionization time
on to the final momentum distribution to the correlated electron dynamics in
the nonsequential double ionization of helium in a strong laser pulse (λ =

800 nm) and show how the mapping provides insight into the double ionization
dynamics. To this end, we study, by means of numerical integration of the
time-dependent Schrödinger equation of a fully correlated model atom, the
temporal evolution of the center-of-mass momentum in a short laser pulse.
Our results show that in the high intensity regime (I0 = 1.15× 1015 W cm−2),
the mapping is in good agreement with a classical model including binary
and recoil rescattering mechanisms. In the medium intensity regime (I0 = 5×

1014 W cm−2), we identify additional contributions from the recollision-induced
excitation of the ion followed by subsequent field ionization (RESI).

Contents

1. Introduction 2
2. Mapping of subfemtosecond ionization dynamics on to momentum distributions 3
3. Numerical model 5
4. Double ionization dynamics at different intensities 6

4.1. Mapping at high intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2. Mapping at medium intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5. Conclusions 11
References 11

1 Author to whom any correspondence should be addressed.

New Journal of Physics 10 (2008) 025020
1367-2630/08/025020+12$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:abecker@pks.mpg.de
http://www.njp.org/


2

1. Introduction

The typical timescale of electron motion in an atom is a few tens of attoseconds, which is
shorter than a single period of the electric field at optical and near-infrared (IR) wavelengths.
Nevertheless, several recent experiments have demonstrated that such fields can be used,
sometimes in combination with attosecond pulses at XUV wavelengths, to detect and control
electron motion on the attosecond timescale (for a review, see [1]). For example, it has been
shown that it is possible to measure directly the electric field of a light pulse using the subcycle
dynamics of the electron [2]. Furthermore, a method named orbital tomography has been
introduced, in which an image of an electronic orbital in a molecule has been measured using
attosecond bursts of light [3]. These measurements are closely related to the experimental
progress in the generation of attosecond pulses of coherent XUV radiation (for reviews,
see [1, 4]), which promise to open the route to time-resolved atomic physics, as the temporal
width of the pulses is comparable with the electron motion on the atomic scale.

Parallel to this progress, another hot topic in strong field physics is the analysis of correlated
electron dynamics driven by an intense laser field. An important example is the correlated
electron emission from an atom or molecule in the field, also called non-sequential double
ionization (NSDI) (for a review, see [5]). It is nowadays widely accepted that the mechanism
for this process at optical and near-IR wavelengths is based on the so-called rescattering
scenario [6]. According to this picture, one electron tunnels through the combined barrier of
the field and the Coulomb potential of the atom or molecule. It is then driven by the oscillating
electric field of the laser and can rescatter with the parent ion to liberate a second electron in an
inelastic collision. The electric field acts in this process as a clock starting with the excitation
of the first electron to the continuum near the maximum of the field and stopping with the
recollision about 3/4 of a cycle later near a zero of the field. It is well known that the recollision
event extends over a few hundred attoseconds in time and is hence well confined in time.
A second related pathway to NSDI is the excitation of the parent ion induced by the recollision
of the first electron and the subsequent ionization of the second electron from the excited ion,
also called RESI [7]. Again, the secondary electron emission process is confined to a period in
time much shorter than a field cycle, here around a maximum of the field. We may note that
both pathways have also been identified in elaborate calculations usingS-matrix theories (for a
review, see [8]) and numerical model calculations (e.g. [9, 10]).

The goal of this paper is to analyze, using the results of numerical simulations, how these
subfemtosecond events are mapped on to the final momentum distribution of the two electrons.
Due to the temporal confinement of the correlated electron emission via different pathways
to discrete times in a field cycle, it is expected (e.g. [7, 11, 12]) that information about the
mechanisms can be inferred from the experimental observations at the end of an ultrashort few-
cycle pulse. In the numerical simulations the mapping principle can be tested by inspecting the
temporal evolution of the correlated electron emission. To this end, we explore double ionization
by a strong laser pulse of a few cycles at the Ti:sapphire wavelength and two peak intensities
(I0 = 5× 1014 and 1.15× 1015 W cm−2). Our analysis is based on the numerical integration of
the time-dependent Schrödinger equation (TDSE) for the correlated wavefunction in a two-
electron model atom. In the model [9, 10], the center-of-mass motion of the two electrons
is restricted to the polarization direction, while the relative motion of the electron remains
unrestricted. Therefore the electron–electron interaction term is fully taken into account, which
puts the model beyond the often used one-dimensional (1D) model [13], in which the motion
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of each electron and, hence, the electron–electron interaction is restricted to the polarization
direction.

The paper is organized as follows: first, we sketch the concept of mapping of attosecond
single electron dynamics on to the final momentum distribution and discuss its extension to the
correlated electron emission via the center-of-mass momentum of the two electrons. Next, we
use it to get insights into the temporal evolution of the correlated electron dynamics by analyzing
numerical results for the NSDI process in two different intensity regimes. For the interpretation
of the quantum calculations, we further use a simple classical model. We end by summarizing
the results concerning the subfemtosecond nature of the double ionization events.

2. Mapping of subfemtosecond ionization dynamics on to momentum distributions

The main characteristics of the photoelectron momentum spectra in a strong laser field can be
roughly understood by means of simple classical considerations. Assuming that the electron is
excited to the continuum at timeti with zero velocity and neglecting the atomic potential, the
electron will move as a free particle under the influence of the laser field only. For a pulse which
is switched off adiabatically, the classical equations for the momentum of the electron along the
polarization direction,p1,z, can be easily integrated, leading to (we use Hartree atomic units,
e= m = h = 1)

p1,z(t → ∞) = −

∫
∞

ti

E(t)dt = −
A(ti )

c
, (1)

whereA(t) = −c
∫ t E(t ′) dt ′ is the vector potential andE(t) the electric field. The expression

shows that the final momentum of the electron under the above assumptions depends on the
ionization timeti only. Here, ionization time refers to the real time of removal of the electron
from the core. This time is also used for the integration of the classical equations of motion
presented below.

The general principle underlying this interpretation, namely the mapping of time to
momentum or energy by means of a fast ionization event and a streaking via an oscillating
electric field of a laser pulse, is exemplified in figure1. An important application is the
attosecond streak camera [14]. In this technique, an attosecond XUV pulse ionizes an atom
by a one-photon absorption and a second low intensity IR laser pulse is used to change the
final momentum of the emitted electron. The basic principle has also been used to measure
the electric field of a near-IR ultrafast laser pulse [2] and the duration of attosecond pulses with
the FROGCRAB technique [15]. In the ideal case, the mapping can be reversed to infer from
the final momentum of the electron its release time. For long pulses, in which the envelope of
the pulse has almost the same amplitude over several cycles, ionization events separated by one
cycle are mapped to the same final momentum and the release phase inferred is relative to the
laser cycle only (cf figure1, left-hand panel). In contrast, when a short pulse is used, individual
ionization events arising from different cycles might become distinguishable (figure1, right-
hand panel).

The principle can be extended to the case of (correlated) emission of two (or more)
electrons using the streaking of the center-of-mass of an electron pair. Assuming that single
ionization occurs at timet0, while at some later timet1 in the pulse the second electron is set
free, the center-of-mass momentum of the two electrons in the direction of the polarization
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Figure 1. Mapping of the ionization time to the final momentum of the electron.
If an ionization event is short compared to the period of the laser field, the value
of the final momentum of the electron is expected to be well approximated by
the value ofA(ti ) whereti is the time of electron emission. Left-hand panel: in
the case of a long pulse, two ionization events separated by one laser cycle will
be mapped on to the same final momentum. Right-hand panel: for a short laser
pulse, each ionization event is mapped on to a different final momentum and the
events can be distinguished in the momentum distribution.

direction of the field is given by:

Pz(t → ∞) = −

∫ t1

t0

E(t)dt − 2
∫

∞

t1

E(t)dt − 1pz = −
A(t0) + A(t1)

c
− 1pz. (2)

1pz accounts for the possibility of a momentum transfer of the first electron to the ion.
For sequential double ionization or a shake-off process, the momentum transfer is negligible
(1pz = 0). On the other hand, in the rescattering scenario, the first electron will, most likely,
transfer energy and momentum to the ion at the instant of its return. One may estimate the energy
transfer either by the excitation energy of the second electron (e.g. to the first excited state of the
ion) in the case of the RESI process or by the ionization energy of the second electron in the case
of a direct ionization upon rescattering of the first electron with the ion. We will use the latter
estimation in the classical model calculations below. It is seen from equation (2) that the final
center-of-mass momentum depends on both time instantst0 andt1. As discussed at the outset,
in the recollision scenario the first step is the emission of one electron near the maximum of the
field, i.e. A(t0) ' 0. Thus, the center-of-mass momentum is determined in this approximation
by the vector potential at timet1, at which the second electron is excited to the continuum, and
the momentum transfer1pz.

In numerical simulations, the mapping principle can be explicitly tested by obtaining the
canonical center-of-mass momentum as a function of time. For calculations in velocity gauge
the canonical momentum corresponds at each time to the final momentum outside the field.
An analysis of the temporal evolution of the center-of-mass momentum will therefore provide
(i) a test of the mapping principle in equation (2) and (ii) insights into the double ionization
dynamics. To this end, we have integrated numerically the TDSE for the case of the helium atom
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interacting with a few-cycle intense laser pulse and analyze the numerical results for the center-
of-mass momentum as a function of time.

3. Numerical model

For our numerical analysis, we have used a recently introduced two-electron model [9, 10]
and applied it to the case of the helium atom interacting with a few-cycle laser pulse. We
consider the TDSE in the reference frame of the center-of-mass and the relative coordinates
of the two electrons. The two-electron Hamiltonian of the system can then be written in the
dipole approximation as:

H(R, r , t) =
P2

4
+ p2

−
P · A(t)

c
+

1

r
−

2

|R + (r/2)|
−

2

|R − (r/2)|
, (3)

whereR = (r1 + r2)/2, P = p1 + p2, r = r1 − r2 andp = (p1 − p2)/2 are the center-of-mass and
relative coordinates and associated momenta, respectively. In this reference frame, the two main
interactions for NSDI, namely the electron–field interaction and the electron correlation, are
decoupled in the two coordinates. We now take advantage of the fact that in an intense linearly
polarized laser field the electron–field coupling is strongly directed along the polarization axis
and therefore restrict the center-of-mass motion along this direction (P → PZ, R → Z). The
final model Hamiltonian for the helium atom therefore depends on three degrees of freedom as
follows:

H =
P2

Z

4
+ p2

z + p2
ρ −

PZ A(t)

c
+

1√
z2 +ρ2

−
2√

(Z − z/2)2 +ρ2/4 +a2
−

2√
(Z + z/2)2 +ρ2/4 +a2

, (4)

wherez andρ represent the relative coordinates of the two electrons parallel and perpendicular
to the polarization axis. The parametera2 is introduced to soften the attractive Coulomb
potentials in the numerical calculations. Witha2

= 0.135, the ground-state energies of neutral
helium and the helium ion are−2.936 and−1.985 au, respectively.

The numerical propagation of the wavefunction is done using the Cranck–Nicholson
scheme on a grid. For the computations, we have chosen aN-cycle laser pulse withE(t) =

E0 sin2(ωt/2N)sin(ωt), and a carrier frequency ofω = 0.057 au, which corresponds to the
Ti:sapphire laser wavelength of 800 nm. Two peak intensities have been considered, namely
I0 = 5× 1014 and 1.15× 1015 W cm−2 with N = 4 in each pulse. We have used a numerical
grid with NZ = 2000(3000), Nz = 1000(1500) andNρ = 200 (300) points for the low (high)
intensity case. In all simulations, the grid spacing was1Z = 1z = 1ρ = 0.3 au and the time
step was1t = 0.05 au.

For the momentum analysis of the two correlated electrons in the continuum, we have
partitioned the coordinate space as [9]

r1 < 12 au and r2 < 12 au : He atom, (5)

r1 < 6 au and r2> 12 au or r1> 12 au and r2 < 6 au : He+ ion, (6)

complementary space : He2+ ion, (7)
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Figure 2. EnergyE of the first electron at the instant of rescattering according
to the semiclassical three-step model (solid line; [6]) at peak intensities of
(a) I0 = 5× 1014 W cm−2 and (b) I0 = 1.15× 1015 W cm−2; also shown is the
electric field (dashed line). The zones of different colors separate the energy
regimes for excitation and ionization of the ion.

with r1 =
√

(Z + (z/2))2 + (ρ2/4) and r2 =
√

(Z − (z/2))2 + (ρ2/4). The distribution of the
center-of-mass momentum along the polarization direction has been obtained by taking the
Fourier transform of the double ionization part and integrating over the components of the
relative coordinate. Please note that these distributions correspond to the canonical center-of-
mass momentum, which corresponds at each time to the momentum observed outside the field
at the end of the pulse.

4. Double ionization dynamics at different intensities

As outlined above, in this section we will analyze the center-of-mass momentum distribution
of the two electrons as a function of time, obtained from the double ionization part of
the wavefunction. We have considered peak intensities in the medium and high intensity
regimes. According to the semiclassical rescattering scenario [6], the return energies of the
first singly ionized electron differ considerably, as can be seen from figure2. The energies
are obtained simply by integrating the classical equations of the 1D motion with the electric
field only. We have considered the release of an electron with zero velocity at the origin
at different time instants in the laser cycle. In the case that the classical motion leads to
a return of the electron to the origin, the return energy has been obtained and is plotted
as a function of the return (recollision) time in figure2. The zones of different colors
separate the energy regimes, in which the energy of the returning electron exceeds the
limits for excitation (gray zone) and ionization (white zone) of the residual ion. Taking
into account that the ionization probability is largest at the two maxima of the pulse, we
may expect that the last two rescattering events aroundt = 2.5T (t = 275 au) andt = 3T
(t = 325 au) will generate the largest contributions to the double ionization signal. According
to the classical analysis, at the higher intensity in both events the electron energy should
be sufficient to lead to direct ejection of the second electron upon rescattering, while at
the medium intensity in the last rescattering event, only excitation of the ion should be
possible.

New Journal of Physics 10 (2008) 025020 (http://www.njp.org/)

http://www.njp.org/


7

Figure 3. Final distributions of the center-of-mass momentum at (a)I0 = 5×

1014 W cm−2 and (b)I0 = 1.15× 1015 W cm−2.

Before turning to the aspect of mapping of ionization time into the center-of-mass momen-
tum, we first present the final distributions of the center-of-mass momentum at the end of the
pulse for the two intensities in figure3. In both cases we observe a double hump structure with
two major peaks at aboutPZ = ±1.4 au for I0 = 5× 1014 W cm−2 (panel a) andPZ = ±1.8 au
for I0 = 1.15× 1015 W cm−2 (panel b) with a central minimum in between. The distributions
are asymmetric overPZ = 0 au due to the ultrashort pulse used in the simulations. According to
the common interpretation, as has been proposed in previous classical analysis of experimental
data [7, 11, 12], the two peaks are related to emission of the second electron upon rescattering at
a zero of the field (maximum of the vector potential), while the center of the distribution results
from the so-called RESI process, in which the second electron is released at the maxima of the
field from an excited state of the ion. Please note that, in general, the RESI process can also
contribute to the two humps [7], which are however usually neglected in the interpretation. It is
the aim of the present paper to confront this interpretation with results of numerical simulations
on the temporal evolution of the center-of-mass momentum distribution during the pulse.

Before we proceed, we may note that in figure3 the central minimum in the distribution is
slightly deeper in the high intensity case as compared to medium peak intensity. This result is in
agreement with the general expectation and experimental observation that the relative strength
from the RESI process to that of the direct emission process decreases as the laser intensity
increases. We may, however, stress that in the present numerical simulations some contributions
to double ionization, created early in the pulse, are being absorbed at the boundaries of the grid
before the end of the calculation. This does influence the asymmetry in the relative heights of the
two humps as well as the ratio of the heights of the humps to the central minimum. Therefore,
the present results cannot be used as a quantitative prediction for future experiments, but just
for a qualitative analysis of the double ionization dynamics. Finally, please note the occurrence
of two small side peaks at larger momenta in both distributions. As we will show below, they
do not follow the simple mapping principle, equation (2), and may result from an additional
interaction of one of the electrons with the core [16].

4.1. Mapping at high intensity

We will now test the general expectations and common interpretation about the ionization
times, as they have been inferred in previous works from the final distribution, by analyzing
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Figure 4. Left-hand panel: evolution of the center-of-mass momentum as a
function of time for a peak intensity ofI0 = 1.15× 1015 W cm−2. Two main
recollision events account for the final momentum distribution. Right-hand
panel: momentum regimes for binary (gray zones) and recoil collisions (red
zones) as obtained from classical calculations. Also shown are the (scaled)
electric field (white line) and the vector potential (red line).

the temporal evolution of the center-of-mass momentum distribution during the pulse from the
numerical results. We first consider the case of high intensity atI0 = 1.15× 1015 W cm−2. The
corresponding temporal evolution of the canonical center-of-mass momentum distribution, as it
is obtained from the doubly ionized part of the full wavefunction, is shown in figure4 in the left-
hand panel. The horizontal and vertical axes correspond to the time (scaled in units of the laser
cycle) and the center-of-mass momentum of the two electrons, respectively. The color coding
represents the population of the doubly ionized part of the wavefunction at a given momentum
and instant of time. To guide further interpretation, also shown are the scaled electric field (white
line) and the vector potential (red line) as a function of time.

While in the experiment the final momentum distribution is accessible after the pulse
only, the numerical results in figure4 provide further insights into how the final momentum
distribution builds up during the pulse. It is clearly seen from figure4 that the two humps
in the final momentum distribution correspond to the two main rescattering events at about
t = 2.5T and t = 3T near the end of the pulse. In the figure, the contributions appear with a
short delay from their instant of generation. This is due to the partition of the coordinate space
into different regions in the numerical simulations (cf equations (5)–(7)). In the case of direct
emission of the second electron upon rescattering, both electrons are close to the nucleus when
the doubly ionized wavepacket is created. According to our partition of the grid, the correlated
wavepacket is accounted as a bound contribution until it has propagated some distance away
from the nucleus and enters the doubly ionized region in the numerical simulations. We may
infer the actual time of birth with a good approximation by extrapolating up to the line of the
vector potential. We identify a major contribution at each of the two events, but there appears
also a minor peak at slightly larger momenta. We may note that despite the fact that we have
chosen a relatively large grid to keep most of the wavefunction on the grid up to the end of the
pulse, parts of the double ionized wavepackets with high center-of-mass momenta got absorbed
at the boundaries. This explains the partial decay of the contributions towards the end of the
pulse.
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The major contributions are seen to appear at momenta which are almost equal to the
maxima of the vector potential att = 2.5T (t = 275 au) andt = 3T (t = 325 au). This indicates
that both contributions to double ionization are generated close to the zeros of the field, in
agreement with the interpretation of a direct emission of the second electron upon rescattering of
the first electron. This is in agreement with the common interpretation of the two-hump structure
of the final center-of-mass momentum distribution (cf discussion of the results in figure3). The
interaction of the two electrons can be simply considered as a binary collision, well known
from field-free electron impact ionization. As can be seen from figure4 the contributions
remain at almost constant momenta throughout the rest of the pulse. This is in agreement with
the mapping principle that the final center-of-mass momentum is determined by the vector
potential at the time of creation of the doubly ionized wavepacket. The evolution at constant
momenta further shows that these contributions are dominantly driven by the interaction with
the field, while the interaction with the Coulomb potential of the residual core seems to
be negligible.

The relative strength of the two main contributions is also in agreement with the
expectations of the semiclassical recollison scenario, since the probability of electron impact
ionization near threshold rises with an increase of the impact energy (cf figure2(b)). Note that
the probability of single ionization should be almost the same in both events, as the first electron
is born near either one of the two main maxima of the pulse.

We now turn to the contributions that appear at momenta larger than the maximum value of
the vector potential. The occurrence of such large momenta indicates an additional interaction
of at least one electron with the nucleus during the double ionization process. We interpret
it as a signature of a recoil collision, in which, after the binary encounter between the two
electrons the impacting electron is backscattered at the nucleus. This interpretation is also in
agreement with recent experimental observations and numerical results of a finger-like structure
in the correlated electron momenta distributions [16]. We may further note that the results seem
to indicate that these minor contributions in the center-of-mass momentum distributions do
not evolve at constant momentum, as is assumed in the mapping principle. The effect could,
however, partially occur due to a quick absorption of these contributions with high momenta at
the boundaries too. A decrease of the center-of-mass momentum with time would be another
indicator of a strong electron–nucleus interaction.

In general, this high intensity case appears to be rather well understood in terms of the
semiclassical analysis, taking into account the separation into binary and recoil collisions.
The latter leads to previously unexpected large center-of-mass momenta beyond the classical
expectations for a correlated electron pair born at the zero of the field (cf [16]). It is, however,
straightforward to take the recoil collision into account in the classical considerations [16, 17].
One simply has to assume that the first electron delivers enough energy to liberate the second
electron, which corresponds to|1pz| =

√
2Ip in equation (2) whereIp is the ionization potential

of the He+ ion. The electron then either continues to propagate with reduced momentum in
the same direction as before (binary collision) or is reflected in the opposite direction (recoil
collision). The kinematical constraints on the center-of-mass momentum for the two main
rescattering events, shown in the right-hand panel of figure4, are found to be in good agreement
with the numerical results.
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Figure 5. Evolution of the center-of-mass momentum as a function of time for a
peak intensity ofI0 = 5× 1014 W cm−2. Two main recollison events account for
the final momentum distribution. Also shown are the electric field (white line)
and the vector potential (red line).

4.2. Mapping at medium intensity

We now turn to the double ionization dynamics at a lower intensity ofI0 = 5× 1014 W cm−2.
The corresponding evolution of the center-of-mass momentum of the doubly ionized
wavepackets is shown in figure5. At first glance the evolution is more complex, but shows
some similarities to the high intensity case discussed above.

We clearly see the occurrence and evolution of the two major contributions att = 2.5T
(t = 275 au) andt = 3T (t = 325 au) corresponding to the two humps and the side peaks in
the final momentum distribution, which come from the last two rescattering events during the
pulse. The signatures of these contributions are similar to those identified and discussed in the
high intensity case. As before, a part of the contributions appears at momenta which correspond
to the maxima of the vector potential at the time instants of recollision, while a second part
occurs at larger momenta. The center-of-mass momentum of the former contributions does
not change during the rest of the pulse (in accordance with the mapping principle), while the
latter gets, here, clearly decelerated and ends at a lower momentum as it is created. Since we
have performed the calculations with almost the same grid parameters as the high intensity
calculations, absorption at the boundaries is, here, less important as the highest center-of-mass
momenta are, here, considerably smaller than in the high intensity case. Thus, in this case, an
interpretation of the decrease of the momenta as due to an electron–nucleus interaction appears
to be even more obvious. We interpret the two contributions, as in the high intensity case, as
due to binary and recoil collisions upon rescattering of the first electron. Please note that in the
first of the two major rescattering events, the contributions of both the binary and the recoil
collisions appear at almost the same time instant. In contrast, in the last rescattering event, the
contribution from the binary collision appears with some time delay as compared to that of
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the recoil collision. This might be connected to the fact that according to the simple classical
estimation (cf figure2(a)) the energy of the returning electron in the last rescattering event is
not large enough to ionize the second electron and the double ionization has to be thought of as
being assisted by the laser field.

In contrast to the high intensity case, we observe in figure5 the occurrence and evolution
of significant contributions at zero center-of-mass momentum throughout the pulse. These
contributions are created near the maxima of the field, as is most clearly seen att = 1.25T
(t = 137 au) andt = 1.75T (t = 192 au), and evolve at constant center-of-mass momenta. They
are in agreement with the predictions of the so-called RESI process [7], in which the first
electron excites the ion upon rescattering and the second electron gets ionized from the excited
state at the field maximum. Please note that the contributions created early in the pulse are being
absorbed at the boundaries of the grid before the end of the pulse. Thus, the central part of the
final momentum distribution in figure2(a) is underestimated in this medium intensity case.

Before concluding, it is interesting to note and at present not understood that we observe
contributions from the RESI process but none due to direct emission of the second electron upon
rescattering in the first half of the pulse. The classical energy of the returning electron exceeds
at least att = 2T the ionization limit, but there are no signatures of the creation of a correlated
electron pair at this time instant at large center-of-mass momentum as in the later part of the
pulse.

5. Conclusions

We have investigated how the concept of mapping ionization time to final momentum
distribution can be extended from single ionization to time-resolved double ionization in strong
fields. To this end, we have obtained the temporal evolution of the center-of-mass momentum
from the numerical solutions of the TDSE of a fully correlated model atom. Simulations are
performed in the medium and the high intensity regimes. Our results have shown that at high
intensities the ionization dynamics is dominated by direct emission of the two electrons upon
rescattering. Contributions from binary and recoil collision events are identified, the latter
leading to unexpected large center-of-mass momenta of the two electrons. Both processes are
also observed in the medium intensity regime, which are accompanied by contributions from
the so-called RESI process. Deviations from the basic mapping principle as well as from the
classical expectation of the correlated electron dynamics are discussed.
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