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Abstract. We present a model for ab-initio calculations of the interaction of two-electron
atoms and molecules with few-cycle pulses of intense linearly polarised Ti:sapphire laser
radiation. In the model the center-of-mass motion of the two electrons is restricted along the
polarisation direction axis, while its relative coordinate and, hence, the electron correlation is
retained in its full dimensionality. Results of numerical simulations exhibit the two pathways to
nonsequential double ionization, namely the emission of a highly correlated electron pair upon
rescattering and a delayed electron emission from a previously excited ion. Comparisons with
the results of the usual one-dimensional approximation, in which the direction of each electron is
restricted to the polarisation axis, are given. Distributions of the center-of-mass momentum and
the correlated electron momenta along the polarisation direction are in qualitative agreement
with the experimental data.

1. Introduction

Due to the development of high power Ti:sapphire laser systems light intensities of the order
of 102 W ¢cm™2 or above can be generated in the laboratories. The field strength at these
intensities is a hundred times the Coulomb field binding the ground state electron in the
hydrogen atom. As the laser intensities increased over the years the pulse lengths decreased
to the femtosecond and the sub-femtosecond regime. The nonlinear interaction of atoms and
molecules with such ultrashort and intense laser pulses has revealed a variety of interesting
effects, namely above-threshold-ionization, high harmonic generation, laser induced tunneling,
Coulomb explosion, multiple ionization and others. Atomic single ionization and other single-
active-electron processes have been intensively studied for many years and the dynamical aspects
in intense laser pulses are considered to be well understood nowadays. Within the single-active-
electron approximation the outermost electron is assumed to be affected by the laser field only,
neglecting the dynamic Coulomb correlation between the electrons in the atom. In the absence
of electron correlation one would expect that multiple ionization proceeds via a sequential
mechanism, in which the electrons are emitted one after the other by subsequent independent
interaction with the external field. But, in experiments with linearly polarised near-infrared
laser pulses (e.g. [1, 2, 3]) the hypothesis of a sequential multiple ionization mechanism has
been disproved. In the low intensity range the observed double and multiple ionization yields
exceed the expectations based on the sequential mechanism by many orders of magnitudes. The
observations therefore provide the evidence of an effective nonsequential mechanism mediated
via electron correlation.
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It is nowadays widely accepted that the underlying mechanism for nonsequential ionization in
a strong laser pulse is based on the following three-step or recollision process ([4, 5, 6], for recent
reviews see e.g. [7, 8]): An electron, excited due to the interaction with the intense laser field in
the continuum, is accelerated by the field, gains energy and can be driven back to the parent ion
when the field changes its sign. Upon recollision it exchanges energy with the second electron
via electron correlation interaction and either both electrons instantaneously leave the atom
together or only one is detached leaving the second in an excited state, which is subsequently
ionised by the field [9, 10, 11]. We may note that the rescattering mechanism can be seen as
a strong-field extension of the two-step-one mechanism (TS1), known for single photon double
ionization at low photon energies [12]. In the latter mechanism one electron absorbs the photon
and knocks out the second electron on its way through the atom. Thus, while in the weak-field
TS1 mechanism the electron correlation appears to be dominant on a very short time scale of a
few attoseconds, in the strong-field rescattering mechanism there is a delay of about 2/3 of the
laser period (about two femtoseconds at Ti:sapphire laser frequencies) between the interaction
of the first electron with the field and the rescattering event.

Despite the success of the rescattering picture, further insights in the process would be
provided by ab-initio calculation of the full laser driven two-electron dynamics. Simulations
of the corresponding Schrédinger equation require the solution of a differential equation with six
dimensions in space and one in time. Such computations at intensities of mid of 104 W ¢cm=2 and
near-infrared frequencies are, however, still at the limit of current high-power supercomputers
[13, 14]. Under these circumstances, alternatives are systematic approximation methods, such as
the intense-field many-body S-matrix theory (IMST), or a dimensional reduction of the many-
body problem. The IMST is a thorough rearrangement of the usual many-body S-matrix series
(for a review, see [7]) such that the dominant features of the process of interest appear in the
first leading terms of the series. In the case of strong-field double ionization analysis of the terms
up to second order has confirmed the rescattering mechanism as being the dominant process for
nonsequential double ionization [15] and provided an interpretation of momentum and energy
distributions of the emitted electrons (e.g. [10, 16, 17, 18]).

On the other hand, solutions of the time-dependent Schrédinger equation of model systems
in reduced dimensions are known to reveal useful understanding of the temporal dynamics.
Fundamental aspects of the single-active-electron dynamics in linearly polarised strong fields, e.g.
in above-threshold-ionization or high harmonic generation, are retained in an one-dimensional
approach, in which the electron motion is restricted to the direction of the field polarisation axis
[19, 20]. Stimulated by this successful application, the one-dimensional approximation has been
extended to the two-electron [21] and the three-electron problem [22] in the past. There occurs
however a significant weak point in the one-dimensional approximation if applied to two or more
electron systems. As outlined above, in nonsequential ionization besides the interaction with
the strong external field the electron-electron interaction plays a dominant role. The latter does
not show the same preferred directionality as the electron-field interaction. Consequently the
one-dimensional model can generate results which are not in agreement with the experimental
observations of nonsequential double ionization.

Below, we review an alternative two-electron approach [23], which goes beyond the
conventional one-dimensional approximation. In that approach we have taken advantage of the
fact that the external field couples to the center-of-mass of a two-electron (many-body) system,
but not to its relative coordinate. Therefore, we have restricted the center-of-mass motion along
the direction of a linearly polarised field, while the relative electron motion, which couples to
the electron correlation interaction, is kept unchanged. The details of the dimensional reduction
are discussed in the next section. The rest of the paper is organised as follows: We apply the
model to the helium atom interacting with a few-cycle laser pulse. Analysis of snapshots of the
electron distributions at different time instants during the pulse reveals different pathways to
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nonsequential double ionization. The two-electron dynamics in the fully correlated model will be
compared with results from the conventional one-dimensional approximation. We then present
numerical results of the distributions of the center-of-mass momentum and the components of
the correlated electron momenta along the polarisation axis. We end by summarising the results.

2. Two-electron model beyond the one-dimensional approximation
The two-electron Hamiltonian for a helium atom interacting with an electromagnetic pulse can
be written in dipole approximation as (Hartree atomic units, h = m = e = 1 are used):

P2, PAA(t) 1 2 2
HRr ) = e Ry R

(1)

where R = (r1+12)/2, P = p1+p2, r =r; —1r9, and p = (p; —p2)/2 are the center-of-mass and
relative coordinates and associated momenta, respectively, and A(t) is the vector potential of the
field. Please note that in the above form the two essential interactions for nonsequential double
ionization, namely the electron-field interaction and the electron correlation, are decoupled in
the two coordinates. Thus, one can take advantage of any directionality induced by the field
by reducing the dimensions of the center-of-mass motion without changing the electron-electron
interaction term. In case of linear polarisation it is reasonable to restrict the center-of-mass
motion to the field direction (P — Pz, R — Z), which results in a model Hamiltonian with
only three degrees of freedom:

n 1 2 2

Ve 422 e (21 +a2 e+ (Z2-3)+a

(2)

where z and p represent the relative coordinates of the two electrons parallel and perpendicular
to the polarisation axis, respectively. Note that for a linearly polarised field the total angular
momentum along the polarisation direction remains unchanged and hence, the Hamiltonian is
symmetric in the relative coordinate over rotation about the polarisation axis. The parameter
a® is introduced to soften the attractive Coulomb potentials in the numerical calculations.

Note that the model above is in the spirit of the one-dimensional approach of the single-active-
electron Hamiltonians [19, 20]. But, it is a more general extension of it to many-electron systems
than the usual restriction of the motion of each electron independently. The conventional one-
dimensional approximation in two-electron systems [21] is obtained from the model Hamiltonian
in Eq. (2) by diminishing the p-coordinate (and transforming it to the coordinate system of the
individual electrons). Thus, it is the transversal direction of the relative coordinate and hence,
the full consideration of the electron correlation interaction term, which puts the present model
beyond the one-dimensional approach. Due to the restriction of the center-of-mass motion along
the polarisation direction, the coordinates and momenta of the two electron perpendicular to
the axis however have to be symmetric which introduces a correlation between the electrons
that is not present in the unrestricted two-electron Hamiltonian in Eq. (1).

P 5
H(Z7p7 Z,t) = T—i_pp—’_pz

2 PZA(1)
c

3. Application to helium atom: Results of numerical computations
Using the two-electron model we have performed ab-initio computations for helium atom [23]
and hydrogen molecule with the two nuclei fixed along the polarisation axis [24, 25]. Below
we will illustrate the results for the helium atom in comparison with those obtained from the
conventional one-dimensional approximation (for the latter calculation we have set p = 0 in the
Hamiltonian in Eq. (2)).

The calculations have been performed by propagating the wave function ¥V (Z, p, z,t) using
the Crank-Nicholson method on a grid. We have used a grid spacing of Ap = Az = AZ =0.3
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Figure 1. (Colour online) Expectation value (p) (red solid line) and electric field (black dashed
line) as a function of time at a laser frequency w = 0.057 a.u. and a peak intensity Iy = 5 x 104
W /cm?.

a.u. and 300 points in p-direction, 2000 points in z- and 2000 points in Z-direction; the time
step was At = 0.05 a.u. The grid was chosen large enough to retain all essential parts of the
double ionised part of the wave function on the grid for a momentum analysis at the end of the
pulse. For the actual computation we have chosen a four-cycle laser pulse with a pulse envelope
of f(t) = sin?(wt/8). The carrier frequency of w = 0.057 a.u. corresponds to the Ti:sapphire
laser wavelength of 800 nm, the peak intensity was 5 x 10'* W/cm?. The initial ground state
wavefunction of He has been obtained by imaginary time propagation. With a? = 0.135 the
ground state energies of the neutral helium and the helium ion are -2.936 a.u. and -1.985 a.u.,
respectively. For the sake of comparison we have also performed one-dimensional calculations
by setting p = 0 in Eq. (2); the grid and pulse parameters were analogous, but the smoothening
parameter has been set to a?> = 0.32 to get similar ground state energies of -2.9043 a.u. and
-2.0057 a.u. for the helium atom and its ion.

A first impression of the relevance of the transversal direction of the relative coordinate in
the fully correlated model is provided via its expectation value (p) (red solid line) as a function
of time during the pulse, as shown in Fig. 1 (c.f. [23]). The temporal evolution of (p) is in full
correspondence with the rescattering model: Whenever the electric field is zero, i.e. rescattering
occurs, there is a maximum in the oscillation, indicating a strong electron correlation. While at
the moments of (uncorrelated) single ionization, when the field is at its maxima, the expectation
value is at minimum.

3.1. Pathways to nonsequential double ionization

Analysis of the evolution of the probability distribution of He atom [23] and Hs molecule [24, 25]
during one laser period have revealed the presence of two different pathways to nonsequential
double ionization. The two mechanisms can be identified from the snapshots in Figs. 2 (at
t = 288 a.u.) and 3 (at ¢ = 316 a.u.). Shown are comparisons of (a) the (Z, z)-distribution
obtained in the one-dimensional approximation, (b) the (Z, z)-distribution, integrated over p ,
and (c) the complementary view of the (p, z)-distribution, integrated over Z, both obtained using
the fully correlated model. Please note that the diagonals in the (Z, z)-distributions represent
the 21 and 29 axes, corresponding to single ionization; while between these axes the double
ionization population is found.

In the snapshots shown in Fig. 2, taken close to a zero of the field, one sees in the (Z, 2)-
distribution of the fully correlated calculation (panel (b)) predominantly a correlated emission of
two electrons at the same side of the core (in the —Z direction). This contribution corresponds
to a direct nonsequential double ionization upon rescattering via a binary electron-electron
scattering [23, 26]. Since the two electrons leave the atom to the same side they exhibit
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Figure 2. (Colour online) Comparison of the spatial probability distributions at ¢ = 288 a.u.:
(a) one-dimensional approximation, (b) fully correlated model integrated over p and (c) fully

correlated model integrated over Z.
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Figure 3. (Colour online) Same as Fig. 2 but at ¢t = 316 a.u.

a strong transversal dynamics due to the Coulomb repulsion between them as it becomes
apparent from the (p, z)-distribution in Fig. 2(c). We may note parenthetically that the smaller
contributions of the double ionization population in the upper and lower triangles can be
interpreted to correspond to a recoil collision, in which the returning electron is additionally
backscattered at the nucleus after the primary electron-electron scattering [26]. The one-
dimensional approximation does not take account of the transversal dynamics of the two
correlated electrons. Consequently, the emission of the electron pair to the same side of the
atom is strongly suppressed (c.f. Fig. 2(a)).

We now turn to the second set of snapshots taken shortly after the next field maximum and
displayed in Fig. 3. One observes that the strongly correlated two-electron wavepacket emitted
at the previous zero crossing of the field is now driven by the field towards the right triangle in
the (Z, z)-distribution (panel b) and due to the long range Coulomb repulsion to larger p (c.f.
(p, z)-distribution in panel (c)). But, there is a second new wavepacket released parallel to the
z1 and 22 axes (upper and lower triangle of the double ionization region in Fig. 3(b)). This
contribution is shown [23, 24, 25] to correspond to a field ionization of the singly ionised He™
ion, predominantly from the excited states of the ion (c.f. [24]). In this pathway the second
electron is released to the opposite direction of that of the first electron. Accordingly, the two
electrons do not show a strong transversal dynamics in the p-direction (c.f. Fig. 3(c)). In the
snapshot obtained using the one-dimensional approximation (Fig. 3(a)) this second pathway
can be hardly identified. This is due to the fact that the contributions from the two pathways
strongly interfere in the one-dimensional approximation, since they are not separated in the
transversal direction as in the fully correlated model.

Before proceeding we note that it has been shown [24, 25] that both double ionization
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Figure 4. (Colour online) Final distribution of (a) the center-of-mass momentum and (b) the
correlated electron momenta along the polarisation direction in the double ionization region as
obtained from the fully correlated electron model. Horizontal axis: center-of-mass momentum
Kz, vertical axis: relative momentum component k.

mechanisms, identified above, are linked to the return of the initially singly ionised electron.
This can be done by the use of absorbing boundaries in order to inhibit the return of some
part of the singly ionised wave packet to the ion. As a result the double ionization population
gets altered and eventually disappear completely, which is a clear evidence that rescattering is
present in both mechanisms. Subtle patterns in the double ionization probability distributions
have been identified to arise due to an interference of the contributions corresponding to the
short and long quantum paths of the singly ionised electron wave packet.

3.2. Momentum distributions

Finally, we present in Fig. 4 the distributions of (a) the center-of-mass momentum and (b) the
correlated electron momenta along the polarisation direction in the fully correlated electron
model. The distributions are obtained at the end of the pulse from the double ionization
population. To this end, we have partitioned the coordinate space as:

r1 <12 a.u. and 79 < 12 a.u. : He atom (3)
ri <6au and ro >12au. or 7y >12au. and ro <6 au. : He' ion (4)
complementary space : He?t ion (5)

with r; = (Z—|—§)2—|—§ and ro =/ (Z — %)24—%.

The center-of-mass momentum distribution (Fig. 4(a)) is related the recoil ion momentum
distributions obtained in the experiments [27, 28]. They show the characteristic double
hump structure with a central minimum known for an ultrashort pulse (c.f. [23]). The side
maxima and the asymmetry of the distribution arise because of the few-cycle pulse used in
the present simulation. The correlated electron momenta distribution shows two prominent
features: First, a maximum appears at k, = k, . — kp . = 0 corresponding to an emission of an
electron pair with the same momentum components along the polarisation direction, which is
in agreement with the first experimental observations [29]. Furthermore, we observe a finger-
like structure corresponding to an asymmetric energy sharing along the polarisation direction
(c.f. [26]). Similar structures have been predicted in calculations at 400 nm wavelength using
the unrestricted full two-electron Hamiltonian in Eq. (1) [14] and are observed in a recent high
resolution, high statistic experiment [26]. The maximum for k, = 0 can be attributed as due to
a binary collision between the electrons, while the finger-like structure occurs due to a so-called
recoil collision in which the returning electron is reflected by the nucleus after the collision with
the electron [26].
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4. Summary

In summary, we have presented ab-initio model calculations of the correlated two-electron
dynamics in Helium atom interacting with an intense ultrashort few-cycle laser pulse. The
model goes beyond the usual one-dimensional approximation, since it includes the electron
correlation via the relative coordinate of the two electrons in its full dimensionality, while
the center-of-mass motion is restricted to 1D along the polarisation axis. Application of the
model to the Helium atom has been discussed and results of numerical calculations have been
presented in comparison with those of the one-dimensional approximation. Two pathways
to nonsequential double ionization are identified and characterised: First, the emission of a
highly correlated electron pair near the zeros of the field showing a strong transversal dynamics.
And, second, the electron emission from previously excited ionic states near the maxima of the
field. Both mechanisms are found (c.f. [24, 25]) to be linked to the return of the single ionised
electron wave packet to the ion. Results for the center-of-mass momentum distribution show a
characteristic two hump structure, while those for the correlated electron momenta along the
polarisation direction exhibit two features. Besides a maximum for an emission of both electrons
with the same momentum components, a finger-like structure corresponding to an asymmetric
energy sharing is found, in agreement with other numerical simulations and a high resolution
experiment.
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