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Dark pulses for resonant two-photon transitions
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We investigate the excitation of an atom or molecule via two-photon absorption induced by an ultrashort
laser pulse in the perturbative intensity regime. We show that the probability for a resonant transition, i.e., with
an intermediate state within the spectral width of the pulse, can be reduced to zero by pulses having a #-phase
step at a certain detuning dw from the central frequency. Our theoretical predictions are confirmed by numeri-
cal calculations for the 4s— 4d transition in the potassium atom.
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I. INTRODUCTION

Ultrashort laser pulses are nowadays used as an effective
tool to steer quantum processes in atoms and molecules [1].
The central idea of quantum control is to provide schemes to
either maximize or minimize the probability of a transition; a
variety of such control schemes have been proposed and
demonstrated [2,3]. For example, the pathway to a desired
final state can be controlled by the time delay between two
pulses [4,5]. Other prominent control schemes are based on
the interference between two different pathways (e.g., one-
photon vs three-photon interference) to a final channel [6] or
on the coherent population transfer among quantum states
using the technique of stimulated Raman adiabatic passage
[7].

The ability to generate ultrashort laser pulses with almost
arbitrary temporal shape through the manipulation of the
spectral phases and amplitudes of the different frequency
components of the pulse [8] has further expanded the range
of quantum control [9,10]. In the nonperturbative high inten-
sity regime it is difficult to theoretically assess the field pa-
rameters relevant for the control of a multiphoton transition
and/or the possible degree of control. Significant progress
has been, however, achieved in the case of perturbative two-
photon transitions [11-14]. It has been shown that in a two-
level system the two-photon absorption can be annihilated by
tailoring the spectral phase function of the laser pulse
[11,12]. Since no net transition is induced, such pulses are
also called dark pulses. For transitions involving an interme-
diate resonance, with shaped laser pulses the two-photon ab-
sorption probability could be significantly enhanced beyond
the level achieved with transform-limited pulses [13].

In this work we revisit the problem of resonant two-
photon transitions and show that even in this case it is pos-
sible to form a dark pulse. The paper is organized as follows:
In the next section we outline the theoretical formulation for
the resonant and nonresonant two-photon transitions in the
perturbative intensity regime. We then discuss the possibility
to induce a net-zero transition probability in the general case
and identify the so-called 6-phase step pulses as a simple
pulse form to annihilate the resonant two-photon absorption.
Finally, we confirm our theoretical predictions by numerical
results for the 45— 4d transition in the potassium atom.
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II. DARK PULSES AND 6-PHASE STEP MODULATION

We consider a laser induced transition between two bound
states of an atom or a molecule, e.g., between the ground
state |g) and an excited state |f). The laser pulse is assumed
to be linearly polarized, given by its electric field E(z)
=E(r)Z, with a central frequency w; which equals half the
transition frequency w;—w,. At sufficiently low field intensi-
ties the transition probability is given by the second-order
term of the perturbation series (for a general derivation see
the Appendix, Hartree atomic units are used: e=m=f=1):

Pro=|As =

— i%(flzlm)(mlzlg)

XJ E(w;+ o' )E(w; — ') do (1)

W, + wp + 0" — w, +i0

where E(w) is the Fourier transform of the pulse and the
summation or integration is over a complete set of eigen-
states {|m)} with frequencies w,),.

If all intermediate states are off-resonant, i.e., w,+w;
— w,, for each m is much larger than the spectral width of the
pulse Aw, in the denominator of Eq. (1) ' can be approxi-
mated by O and the delta term in the expansion of the singu-
larity can be neglected. Thus Py, can be approximated by

[12]

m W+ 0 — W,
~ ~ 2
X f E(w,+ o )E(w, - 0')dwo' | . (2)

As is evident from Eq. (2) and has been shown by Me-
shulach and Silberberg [11,12] the probability for a nonreso-
nant two-photon transition is maximized for any antisymmet-
ric spectral phase distribution around the central laser
frequency w; including the transform limited pulse as a spe-
cial case. On the other hand, the power spectrum of the pulse
can be tailored such that the pulse induces a zero net prob-
ability to find the system in the excited state. Pulses with a
m-phase step at a certain detuning, defined by
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B Eq (o) for |o|> o, + dw
E(w)=) N )
¢Eq (w) for [of < wp + bw
where dw is the detuning parameter controlling the position

of the step and Eq;(w) is the transform limited Gaussian
pulse, are particular simple examples of such so-called dark
pulses [11,12,14].

In the (general) case of a resonant transition Eq. (1) can
be written as a sum of two terms [13]:

P = ‘ - 3 m)nll) | 7oy 0,)Elo, ~ 0,

2

, (4)

+l'7>f E(wf—w')g(w’ _wg)da)’

’
0 —w,

where P is Cauchy’s principal value. The first term depends
on the spectral components of the pulse at the resonant fre-
quencies and determines the real part of the amplitude, while
the second term contains an integration over all the other
frequencies and sets the imaginary part. It is the second term
which enables an enhancement of the transition probability
beyond the level achieved by the transform limited pulse as
shown by Dudovich er al. [13].

We now turn to our objective to finding a dark pulse for a
resonant two-photon transition. As can be seen from Eq. (4)
the amplitude of such a transition is, in general, complex. In
order to control (annihilate) both values, namely the real and
the imaginary part of the amplitude, two control parameters
are needed. As we will show below, this can be achieved in a
simple way by pulses with a #-phase step at a certain detun-
ing dw, defined as

N Eq(w) forlo|> o+ éo
E(w)=) , (5)
eHE L (w) for o] < wp + do

where the positive (negative) sign applies for the positive
(negative) part of the Fourier frequency spectrum. This re-
flects that the two parts of the spectrum are complex conju-
gate to each other, since the electric field is a real valued
quantity. Thus in the experiment both parts are addressed
simultaneously by the same parameter 6.

Please note that the set of pulses, defined by Eq. (5),
includes the transform limited pulse (for #=0) and pulses
with a 7r-phase step (for =) as special cases. All pulses of
this set have the same energy, since they differ in their
phases, but not in their amplitudes. From Eq. (1) it is easy to
see that

Ay (60, 6) = exp(2i0)A, ,(~ bw,— 6), (6)

where Ay (S, 0) is the transition amplitude obtained using a
pulse with a #-phase step at dw. Therefore we may restrict
our analysis to phase steps at negative values of dw, having
in mind that Eq. (6) determines a second (set of) solution(s)
at positive detunings.

In order to simplify the further discussion, we now restrict
our analysis to two-photon transitions with one intermediate
resonant state. For this case the effect of the #-phase step
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modulation is illustrated in Fig. 1(a), where the real and the
imaginary parts of the transition amplitude induced by cer-
tain modulated pulses are exemplified. Any 6-phase step at
an arbitrary detuning dw influences the real and/or the imagi-
nary part of the complex transition amplitude.

Let us discuss a few special cases: First, it easily seen
from Eq. (4) that for a 6-phase step at the central frequency
w;, (8w=0) the absolute square of the amplitude is indepen-
dent of the value of 6 [see circle with zero as center in Fig.
1(a)]. Thus all pulses of this subgroup will induce the same
transition probability as the transform limited (Gaussian)
pulse independent of the phase step [cf. Fig. 1(c)]. We may
note parenthetically that the same applies for the unimportant
cases of an application of the phase step at a detuning outside
the pulse spectrum (|dw|> Aw).

Next, application of a 7r-phase step as a function of the
step position dw does continously change the imaginary part
of the amplitude. On the other hand the real part switches
between two values for |dw| <|w,—w,,| and |dw| > |w, - w,,|,
respectively. This is illustrated by the vertical lines in Fig. 1.
Note that the original transform limited (Gaussian) pulse cor-
responds to a pulse with a m-phase step below the pulse
spectrum (Sw<—Aw). The imaginary part of the amplitude
and the corresponding transition probability [cf. Fig. 1(b)]
tends to infinity as |Sw| approaches the resonance |w; — w,,|.
The probability of a resonant transition cannot be vanished
using pulses having a m-phase step.

Finally, a variation of 6 between 0 and 27 at any detuning
6w will result in a loop in the complex amplitude plane. The
result for the transform limited pulse (6=0) is on each of
these loops. The smaller the parameter dw, the smaller is the
radius of the loop, since the variations from the amplitude
obtained with the transform limited pulse are smaller
[see also the numerical results in Fig. 4(a)].

From the analysis above it is clear that at negative detun-
ings there exists a pair of parameters (6, 6®g,) for which
the amplitude of the resonant two-photon transition is zero.
Due to the relation in Eq. (6) a second pair is given by
(= 0ark»— 0w 4y1)- Thus there are two dark pulses in the set of
pulses defined by Eq. (5). The corresponding parameters can
be determined by variation in an experiment or by numerical
simulations, as shown in the next section.

III. NUMERICAL RESULTS FOR THE 4s —4d
TRANSITION IN POTASSIUM ATOM

In this section we will verify our theoretical conclusions
by results of numerical calculations. We have chosen the
potassium atom for our numerical studies, since it has one
valence electron and can be treated as single-active-electron
atom (similar to the hydrogen atom). The relevant energy
levels in the potassium atom are shown in Fig. 2. A two-
photon transition in the K atom between the ground state
[4S15(4s)] and the 4Ds, 5/5(4d) state can be induced by a
laser pulse with a central wavelength of 730 nm. The energy
differences to the intermediate 4P5,,(4p) state correspond to
770 nm (4S state) and 694 nm (4D state). This transition is
well suited for our considerations, since the intermediate
state is resonant for short pulses with a large bandwidth but
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FIG. 1. (a) Imaginary vs real part of resonant two-photon transition amplitudes A;,. Shown are examples for the transform limited
(Gaussian) pulse, pulses with 6-phase steps at the central frequency w; (circle), and pulses with a 7-phase step at different detunings dw/Aw
from the central frequency (lines). Transition probabilities (b) as a function of the detuning for pulses with a r-phase step and (c) as a

function of @ for pulses with a #-phase step at the central frequency.

almost nonresonant for long pulses having a small band-
width. For the actual calculations we have considered pulses
with transform-limited durations (FWHM) of 35 optical
cycles (or bandwidth of 6.5 nm) and 7 optical cycles
(or bandwidth of 31 nm), respectively.

A. Theoretical description

To obtain the time-dependent amplitudes of the different
states, a,(f), we first expand the wave function in a basis of
atomic eigenstates {|n)}:

(1)) = X a,(1)|n). (7)

The basis set used in the actual simulations covers a large
number of bound states of the potassium atom, namely 4s
-46s, 4p-21p, 3d-46d, 4f-14f, Sg. The neglect of higher Ry-
dberg states and the continuum does not influence the con-
clusions concerning dark pulses with #-phase steps.

Using the expansion in Eq. (7) in the time-dependent
Schrodinger equation of the one-electron atom interacting
with an external field one obtains a set of coupled ordinary

4d

A
694 nm 730 nm
S a— >‘>
4p
770 nm 730 nm
4s

FIG. 2. Energy-level diagram of two-photon transitions in a po-
tassium atom. Note that the 4p level lies well within the spectrum
of the shorter pulse [7 optical cycles; bandwidth: 31 nm full width
at half maximum (FWHM)], but outside the bandwidth of the
longer pulse (35 optical cycles; bandwidth: 6.5 nm FWHM).
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FIG. 3. The population in the excited 4d state for long and short
m-phase step pulses at different step position dw (scaled in units of
Aw). The solid curve corresponds to the transition induced by the
short resonant laser pulse, while the dashed line represents the re-
sults obtained for the long nonresonant pulse.

differential equations for the time-dependent coefficients
a,(t), which can be solved using standard techniques. The
numerical results presented below are obtained using the ve-
locity gauge, which in general have been found [15] to pro-
vide more accurate results than the length gauge. For a one-
electron atom, the transition amplitude between two states
|n,0) and |n',1') in the velocity gauge is related to those in
the length gauge by [16]

(n',l'

nly=i(E, —E,)n',l'|?

n,l). (8)

The latter are obtained from the averaged oscillator strengths
sNSD given in the NIST Atomic Spectra Database, via [16]

n'l" nl
[
nh=E\S " ()
a lV’Zlmax(4lr2nax_ l)

where [,,,,=max(l,l"). The negative sign applies for n=n’
and the positive otherwise.

p-

(n',I'|2

B. Amplitudes for #-phase step pulses

In Figs. 3 and 4 we present the results for the excitation to
the 4d state of the K atom for pulses with different phase
steps. Before we turn to the general case, let us discuss the
results for the conventional 7r-phase step pulses, shown in
Fig. 3. Plotted are the transition probabilities as a function of
the step function dw induced by the long nonresonant
(FWHM of 35 optical cycles, dashed line) and the short reso-
nant (FWHM of 7 optical cycles, solid line) pulses. The peak
intensities were chosen to be 3 X 10° W/cm? (short pulse)
and 1.34X10%° W/cm? (long pulse), such that both pulses
have the same energy.

As can be seen from Fig. 3, the transition probability has
two zeros for the long pulse (dashed line), which confirms
the results of earlier studies [11,12,14] that a nonresonant
two-photon absorption can be annihilated using 7 pulses. In
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FIG. 4. (a) The imaginary (vertical axis) vs the real (horizontal
axis) part of the final amplitude of the 4d state and (b) the transition
probabilities as a function of 6 for application of the #-phase step
function at different detunings dw used for the short resonant laser
pulse.

contrast, in the case of the resonant two-photon transition
induced by the short pulse (solid line) the final state popula-
tion does not vanish independent of the m-phase step posi-
tion. Thus for a resonant two-photon transition there does not
exist a dark 7 pulse. Note that in the latter case the numerical
results do not reproduce the “infinite” enhancement of the
imaginary part, as predicted by Eq. (1) for a 7-phase step at
the resonance. This is due to the fact that in the actual cal-
culations we have smoothed the phase step over a small fre-
quency window.
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The probability for the resonant transition can, however,
be annihilated as soon as phase steps with values different
from #=m are used. This is demonstrated through the nu-
merical results in Fig. 4. Shown are the transition amplitude
[panel (a)] and the final-state populations [panel (b)] for
changes of 6 between 0 and 27 at certain step positions dw.
The numerical results are found to fully confirm our theoret-
ical conclusions, discussed in Sec. II. Changes of 6 result in
a loop for the amplitude in the complex plane. Any 6#-phase
step at the central frequency (Sw=0, dashed lines) results in
almost the same transition probability, the small variation
from this trend in the numerical results is again due to the
smoothening of the phase step over a small frequency win-
dow. The smaller the parameter dw, the smaller is the radius
of the loop in the amplitude representation. And, finally, the
goal to form a dark pulse for the 45— 4d transition in the K
atom via the intermediate resonant 4p state is indeed
achieved for 6,;,,=0.87 and Swy,;,=—0.4Aw (solid line).
Our numerical calculations (results not shown) confirm that a
second dark pulse is given by 6,,,=—0.87 and Jw,,«
=0.4Aw, as expected from Eq. (6).

C. Summary

To summarize, we have studied the general case of a two-
photon transition including an intermediate state within the
spectral width of the pulse. We have shown that the transition
probability can be annihilated by tailoring the spectral phase
of the pulse. Pulses with a #-phase step at a certain detuning
from the central frequency are found to be particular simple
examples for such dark pulses. Our theoretical predictions
are confirmed by results of numerical calculations for the
45— 4d transition in the K atom.

APPENDIX: PERTURBATION THEORY IN THE
FREQUENCY DOMAIN

Here we present a derivation of the transition amplitude to
any order in the coupling of the electron to a short laser pulse
using perturbation theory formulated in the frequency do-
main. The Schrodinger equation and the wave function ¢(z)
can be written using the time-dependent perturbation method
as (see, e.g., Ref. [17], Sec. 35, [18], Chap. XIII):

igdr) = [Hy+ Nh(0) H, (1), (A1)
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() = PO+ g () + NP + -, (A2)

where H, is the (e.g., atomic or molecular) reference Hamil-
tonian, A is an expansion parameter, H; is a constant matrix,
and h(r) is a real-valued time-dependent function (e.g., the
electric field of the linearly polarized laser pulse). After stan-
dard steps one gets the following set of equations:

i (1) = Hyp'"\1), (A3)

(1) = Holt"(0) + h()Hyf" (1), n=1.2, ...

(Ad)

The latter equation (A4) is a multidimensional complex

harmonic oscillator equation for 1%”)(1‘) with the driving
force h()H"~V(r). Let us now switch to the frequency
domain and denote the Fourier transforms of the wave func-
tion and h(r) by J(w) and h(w), respectively. Using
|f1))=exp(—iw,1)|g) as the initial unperturbed solution,
where |g> is, e.g., the ground state of the atom or molecule,
we get as a recursive solution of the above equations by
using the propagator of the harmonic oscillator with appro-
priate boundary conditions

|70(0)) = 2780 - w,)|g) (AS)
7(n) — L—l
|¢’( ()= \J’%w—HO+iE I
X J )| Nw-w'))do'.  (A6)

The amplitude in nth order of finding the atom in a particular
atomic eigenstate |f) after the interaction with the pulse can
be obtained by projection followed either by Fourier trans-
form of Eq. (A6) or by direct integration of Eq. (A4). It is
given by

AP(e)) = e fH, f h(oh]#" ™ wp = w)de,

(A7)

where w is the eigenfrequency of the state |f). Equation (1)
of the present paper is the respective expression for n=2 and
t— o given in the interaction picture.
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