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1. INTRODUCTION

High-harmonic generation (HHG) is a fundamental
nonlinear process in strong-field physics for the gener-
ation of attosecond pulses ([1], for a recent review, see
[2]). This is due to the fact that coherent radiation is
generated at odd multiples of the laser frequency over a
broad spectral range. The broad range is characterized
by the universal shape of a high-harmonic spectrum
with a slow decrease for the first few harmonics, fol-
lowed by a long plateau region of harmonics having
similar intensity, which ends with a sharp cutoff.
Assuming equal phases among the harmonics in the
plateau region, trains of subfemtosecond pulses can be
obtained by the coherent superposition of several har-
monics, as has been demonstrated recently (e.g., [3, 4]).
Also, it has been shown that single subfemtosecond
pulses can be generated from harmonics at the cutoff
with a few-cycle driving pulse (e.g., [5]).

An understanding of the perspectives and limits of
attosecond pulse generation from high-harmonic radia-
tion requires a thorough analysis of HHG itself. The
current picture of HHG has been established from the-
oretical research assuming the interaction of a laser
pulse with gases at low pressures, at which the process
can be described as a purely single-atom phenomenon.
In this approach the effect of the surrounding medium,
ions and/or atoms, has been considered for the phase-
matching effects and the propagation of the harmonics
only. It is a widely accepted consensus that the main
characteristics of HHG can be explained by the semi-
classical three-step rescattering model [6, 7]. First, the
atom is ionized by tunneling of an electron through the
potential barrier of the combined Coulomb and laser
fields, followed by the acceleration of the electron in
the laser field, during which, for linear polarization of

the field, the electron may return to and recombine with
the parent ion with the emission of a harmonic photon.
This interpretation of the process has been confirmed
by a quantum-mechanical description of HHG [8, 9].

It is important to note that two different quantum
paths of the electron wavepacket have been identified
for the generation of the harmonics in the plateau. The
two paths differ in the time interval between the cre-
ation of the wavepacket in the continuum and the
moment of recombination and are, hence, usually
referred to as short and long quantum paths. In the pla-
teau region of a HHG spectrum, the central peak of a
harmonic is generated by the contribution of the short
quantum path, while sidebands appear due to the long
quantum path [10–11]. In the cutoff region, both contri-
butions usually strongly interfere and cannot be sepa-
rated.

Recently, we have shown [13] in numerical calcula-
tions that, at high medium densities, the quantum paths
of the wavepacket will be perturbed by the fields of
other ions or atoms in the vicinity. Above a certain tran-
sition density, this leads to a suppression of the HHG
signal, as has also been experimentally observed in an
expanding water microdroplet [14]. The results of our
calculations have shown that the transition density dif-
fers by almost an order of magnitude for the two
(shorter and longer) quantum paths. This is interesting,
since it may lead to a narrowing of the harmonic lines
and a shortening of the attosecond pulses.

In this paper we analyze theoretically the generation
of attosecond pulses in a partially pre-ionized Ar gas
under high pressure. Under these conditions, the har-
monic generation is affected by neighboring ions, as we
will discuss below. The harmonic response of the Ar
atom is found by numerically solving the three-dimen-
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Abstract

 

—Attosecond pulse emission via high harmonics generated in a dense medium is studied theoreti-
cally. We solve numerically the three-dimensional Schrödinger equation for a single-electron atom in the com-
bined field of the neighboring ions and the laser and average the results over different random positions of the
particles using the Monte Carlo method. The XUV spectra are calculated for different medium densities. A
change in the harmonic properties is seen when the medium density exceeds a certain transition density, where
the single-atom response is affected by neighboring ions of the medium. The transition density differs for the
two (shorter and longer) quantum paths by about an order of magnitude. The latter effect leads, for ionic den-
sities in the transition regime, to a shortening of the attosecond pulses. This is exemplified for the generation of
attosecond pulse trains as well as of a single attosecond pulse in a few-cycle pulse.

 

ATTOSECOND SCIENCE
AND TECHNOLOGY



 

800

 

LASER PHYSICS

 

      

 

Vol. 15

 

      

 

No. 6

 

      

 

2005

 

STRELKOV 

 

et al

 

.

 

sional Schrödinger equation for a single-electron atom
in the combined fields of the laser and of the neighbor-
ing ions. The results are averaged over different random
positions of the ions using the Monte Carlo method. We
concentrate then on the application of the high harmon-
ics to attosecond pulse generation. For the driving laser,
both long pulse durations of up to several tens of fem-
toseconds as well as few-cycle pulses are considered.
The results, calculated at the transition densities of the
medium, are compared with those generated by the sin-
gle atom (without a medium), and the shortening of the
attosecond pulses in the presence of the medium is dis-
cussed.

2. NUMERICAL MODEL

The harmonic response of an atom in a medium of
ions, induced by a short intense laser pulse, is obtained
numerically by solving the three-dimensional time-
dependent Schrödinger equation for a single-electron
atom in the superposition of the external fields of the
ions and a linearly polarized laser (Hartree atomic units
are used throughout; 
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 is the laser frequency, 
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 is the laser pulse dura-
tion (FWHM of the intensity), 
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 is the absolute phase
of the field, and 
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 is the projection of 

 

r

 

 on the polariza-
tion direction of the laser field. 
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potentials of the parent ion and of the medium, given in
cylindrical coordinates (
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) (the origin of the coordi-
nate system is set at the position of the parent ion):
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where 
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 are the medium density and the volume
of the medium, respectively. In the simulations, the vol-
ume is chosen to be large enough that particles outside
of it surely have no effect on the HHG. Note that such
an “axially symmetric” medium potential (Eq. (3)) cer-
tainly does not correctly reproduce the effect of the
medium on the electron motion in the radial direction
(considered in [12]). It can be shown [13] that for the
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generation conditions used below this effect is negligi-
ble in comparison with the effect on the longitudinal
motion, which is reproduced adequately in Eq. (3).

As the gas medium, we have considered an ensem-
ble of Ar atoms/ions and used approximate potentials of
the following form:

(4)

with 

 

A

 

 = 5.4 and 

 

a

 

 = 2.125. The potential has properties
similar to the potential suggested in [15]; e.g., the
ground-state eigenenergy of an electron bound in the
potential reproduces correctly the ionization energy of
Ar, and the binding energies of the two lowest exited
states are close to the corresponding energies in the
Ar atom.

The harmonic response in the medium is calculated
using the Monte Carlo method. The initial wavefunc-
tion 
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 = 0) represents an electron in the lowest
bound state of potential (4). A set of random positions
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 of ions (or atoms) is chosen for a given medium
density (
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 is the number of the Monte Carlo attempt),
and medium potential (3) is calculated. Then,
Schrödinger Eq. (1) is solved for 
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∈

 

 [0, 2
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], and the
second derivative of the atomic dipole moment (which
is proportional to the force acting on the electron) is
obtained:

(5)

which is expanded in a Fourier series 
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). To simulate
the response of many atoms in the medium, these steps
are repeated until the Monte Carlo average,

(6)

has converged, and the harmonic spectrum is then

obtained by the coherent response  of this
Monte Carlo simulation. Attosecond pulses are calcu-
lated from the intensity of a harmonic group as a func-
tion of time by

(7)

3. RESULTS AND DISCUSSION

Before discussing the influence of an ionic medium
on the generation of attosecond pulses, we first present
results of our numerical simulations for HHG. We have
considered the interaction of an Ar atom with a short
laser pulse at the typical Ti:sapphire wavelength,
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namely, λ = 800 nm, and a pulse duration of 50 fs in
most of the calculations (otherwise, it is stated explic-
itly). For a 50-fs laser pulse, the results certainly do not
depend on the absolute phase; for a shorter pulse, the
absolute phase is specified below.

3.1. High-Harmonic Spectra

In Fig. 1 we show a comparison of the harmonic
spectra generated in the presence of an ionized back-
ground medium with a density of 1020 cm–3 (right-hand
panel) with those obtained without a medium (left-hand
panel). It is seen from the comparison that, in the pres-
ence of the medium, the typical harmonic spectrum
with peaks at the odd multiples of the fundamental fre-
quency is strongly modified. Due to the increase in
incoherence in the harmonic response by the variation
in the harmonic phase, the intensities of the harmonic
lines are reduced. It appears that the higher the har-
monic number, the stronger the reduction, which results
in a change in the envelope of the spectrum. It is also
seen from Fig. 1 that the harmonic lines appear to be
much sharper in the presence of the ionic medium than
for the single-atom response.

We may note parenthetically that the latter effect is
due a suppression of the sidebands in each harmonic
line, which are generated by the contributions of the
long quantum path, while the central peak remains [13].
This leads to an effective narrowing of the harmonic
line and might be interesting for spectroscopic applica-
tions, where harmonic lines are often used as a pump
pulse to excite the target to a specific excited state,
which is then probed by ionization with a second pulse.

The change in the envelope and in the characteristics
of the harmonic line is due to a different dependence of
the contributions of the two quantum paths on the
medium density. This can be seen from the results pre-
sented in Fig. 2. We have equally divided the plateau
harmonics into three groups, which we denote as the

lower, middle, and cutoff groups (see Fig. 1, left-hand
panel), such that, at a given intensity, there is the same
number of harmonics in each group. Also, we have sep-
arated the contributions of the shorter and the longer
quantum paths in the lower and the middle group by
identifying the sharp peak in the middle of the har-
monic line as the contribution of the shorter path and
the sidebands as due to the longer path (the two contri-
butions cannot be separated in the cutoff region). The
total energy due to each of the contributions in the three
groups is shown in Fig. 2 as a function of the density of
an ionic medium. The results are normalized such that
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Fig. 1. Harmonic spectra generated under the fundamental peak intensity 2 × 1014 W/cm2 for a single atom without a medium (a)
and in a fully ionized medium of density 1020 cm–3 (b). Groups of harmonics, used in the analysis below, are indicated.
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Fig. 2. Total emitted energy of groups of harmonics gener-
ated under the peak intensity 2.0 × 1014 W/cm2 vs. density
of the completely ionized medium. Contributions of shorter
and longer quantum path are presented separately; groups
of harmonics are as indicated in Fig. 1. The energies are
normalized at the energy in the absence of the medium.
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the single-atom result (without a medium) is set to 1 in
each case.

In Fig. 2 one can clearly see that the contributions
due to the longer quantum path decrease at a lower
ionic density than those due to the shorter quantum
path. The difference between the transition densities is
larger for the lower harmonic group than for the one
from the middle of the plateau, which is consistent with
the fact that the difference of the quasi-classical motion
along the two paths is most pronounced for the lower

plateau harmonics [9, 16]. We may define a character-
istic transition density as the value at which the effi-
ciency of harmonic generation is half that of the single-
atom response. It can be seen from the results in Fig. 2
that this density depends slightly on the harmonic
group and ranges between about 1019 cm–3 (contribu-
tions of the longer path) and 4 × 1019–1020 cm–3 (contri-
butions of the shorter path). Note that this difference of
about an order of magnitude in the transition densities
for the two quantum paths should be large enough to
allow for experimental observations of the effects dis-
cussed below.

We may note that our results for the decrease in the
coherent harmonic response towards incoherent emis-
sion are in agreement with the observations in a recent
experiment [14] on HHG in water microdroplets. The
numerical value for the transition density is in good
order of magnitude agreement with the experimental
results. A more detailed comparison would require pri-
marily the theoretical investigation of HHG in a
medium of water molecules as well as a higher accu-
racy of the measurements.

3.2. Attosecond Pulses

As was mentioned at the outset, it has been shown
that attosecond pulse trains as well as single attosecond
pulses can be obtained using the radiation of a group of
harmonics. Usually two pulses (pulse trains) are gener-
ated due to the contributions from the shorter and the
longer quantum path, respectively (see, e.g., [16]). As
was shown above, at a medium density in the transition
regime, the two contributions are influenced differ-
ently: while the contribution of the long quantum path
is suppressed strongly, that of the shorter path is nearly
unaffected. Thus, the attosecond pulses should be also
modified. We have calculated the attosecond signal
from groups of harmonics in the plateau as well as from
the cutoff harmonics, and few-cycle pulses are also
considered. In all cases, we observe a shortening of the
attosecond pulses due to the suppression of the contri-
bution from the longer quantum path [13]; examples are
shown in Figs. 3–5.

First, we consider the signal from a group of har-
monics, namely, Ωlow = 26ω and Ωhigh = 38ω. The
results of the calculations for a medium density of
1020 cm–3, a laser peak intensity of 2 × 1014 W/cm2, and
a pulse duration of 50 fs are presented in Fig. 3 (solid
line). In the absence of the medium, one can recognize
the two trains of attosecond pulses (dotted line) gener-
ated due to the contributions from the two quantum
paths. The two trains are partially superimposed, result-
ing in a train of pulses with a duration of more than a
femtosecond. As expected, in the presence of the ion-
ized medium with a density in the transition region, one
of the trains is strongly suppressed and, indeed, a single
attosecond pulse train, generated by the shorter path
contributions, arises.
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Fig. 3. Intensity of the 27th to 37th harmonics vs. time gen-
erated without a medium (dotted line) and in the ionized
medium (solid line). Peak intensity of the fundamental is
2 × 1014 W/cm2. Arrows mark parts of the attosecond pulse
mainly generated due to the shorter and the longer path con-
tributions, respectively. Every curve is renormalized to its
maximum. Origin of the time axis corresponds to the center
of the pulse.
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Fig. 4. Intensity of the highest harmonics (31st and higher)
vs. time. Other parameters are the same as in Fig. 3. Every
attosecond train is renormalized to its maximum.
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The train of attosecond pulses obtained from the
cutoff harmonics (namely, using Ωlow = 30ω and Ωhigh =
48ω) is presented in Fig. 4; the laser parameters are the
same as in Fig. 3. We see that, in the presence of the
medium, mainly the front of the attopulse survives.
This leads again to the shortening of the pulse: in the
absence of the medium, the pulse duration is about
310 as, while, in its presence, it is about 230 as.
Although shorter and longer quantum path contribu-
tions can not be strictly separated for the cutoff har-
monics, most likely the origin of this shortening is the
same as in the previous figure, namely, the difference of
the medium effect on the different quantum paths.

Attopulse production using the cutoff harmonics is
especially important, since a single attopulse has been
obtained via these harmonics using a few-cycle funda-
mental laser pulse [5]. Therefore, we also have per-
formed calculations with a 5-fs-long fundamental hav-
ing an absolute phase of ϕ = π/2 (“cos-like” pulse).
Results are presented in Fig. 5. One can see that a single
attopulse is generated both in the presence and the
absence of the medium; however, in the presence of the
medium, the satellite attopulses are more pronounced.
The attopulse generated in the presence of the medium
is again shorter than without a medium, as in the previ-
ous figures.

Thus, under certain conditions and using medium
densities higher than about 3 × 1018 cm–3, a shortening
of attosecond pulses seems to be feasible. In this paper
we did not consider the effect of the phase-matching on
the XUV generation, which also can favor a contribu-
tion of a certain quantum path. Depending on the exper-
imental parameters, either the effect of the phase-
matching or the phenomena considered in this paper
may play a dominant role in the influence of a medium
on the XUV generation.

4. CONCLUSIONS

We have investigated high-harmonic and attosecond
pulse generation from an argon atom in a dense
medium. Results are obtained by solving the
Schrödinger equation for an atom in the combined
fields of the laser and of the ionic background medium
numerically and by calculating the Monte Carlo aver-
age for sets of randomly located ions. Significant
changes in the harmonic response from the single-atom
result (without a medium) are found in a transition
regime between 1019 and 1020 cm–3. Due to the random
variation of the harmonic phase induced by the external
field of the neighboring particles on the free motion of
the electron wavepacket, the harmonic lines are sup-
pressed. Most interestingly, the contributions of the
shorter quantum path to the harmonic lines are found to
be affected at higher densities than those of the longer
quantum path. This leads to a shortening of the attosec-
ond pulses in a train as well as of a single attosecond
pulse at certain transition densities. For instance, the
attosecond pulse duration obtained from the cutoff
group is shortened by about 80 as to 230 as in the pres-
ence of an ionic medium with a density of 1020 cm–3.
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Fig. 5. The same as in Fig. 4 but using a 5-fs-long “cos-like”
fundamental pulse with peak intensity 2 × 1014 W/cm2.


