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Limits of a stationary phase method for ionization of atoms
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Abstract

A stationary phase approach to a typicalS-matrix expansion for atomic ionization in strong laser fields is examined
respect to its range of validity.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Ionization of an atom induced by an intense la
field and related processes, such as high harm
generation and nonsequential double ionization, h
been studied extensively during the past two deca
In the domain of nonperturbative electron–field
teraction exact calculations of the process proba
ity by direct numerical solution of the associat
Schrödinger equation of the system of interest req
large computational effort. Hence, systematic appr
imation methods, such as theS-matrix theory, are of-
ten used for an estimation of the transition amplitu
For example, one of the most well-known formu
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for the total rate of ionization of atoms, the so-cal
Keldysh–Faisal–Reiss (KFR) formula [1], can be o
tained as the leading term of aS-matrix expansion.

In the application ofS-matrix theory to strong
field processes often Fourier-type integrals with la
parameters in the exponent occur. Such integrals
asymptotically be reduced to the contribution of a f
terms by means of the stationary phase method (
[2,3]). The method has been used in the case of h
harmonic generation [4], high-energy above thresh
ionization [5–7] and nonsequential double ionizat
[8,9] to approximately evaluate terms of the respec
S-matrix expansion.

Below we examine the range of validity of th
stationary phase ansatz for a typical strong-fieldS-
matrix expansion. To this end, we apply the station
phase method to the calculation of the total rate
ionization of hydrogen atom within the first-ord
.
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KFR theory. Then we compare the results obtain
using this approximation with those of the exa
evaluation of the KFR ionization rate.

2. Application of the stationary phase method

Using the standard KFR ansatz of first order for
wavefunction of an initially bound electron subject
to intense laser radiation, the transition amplitude
Volkov state at timet can be written as (Hartree atom
units,e = h̄=m= 1 are used, e.g., [10])

A
(1)
f i (t)= −i

t∫
ti

dt1
〈
φVk (t1)

∣∣ − p · A(t1)
c

(1)+ A2(t1)

2c2

∣∣φ0(t1)
〉
,

whereA(t) denotes the vector potential of the ele
tron–field interaction in the dipole approximation,φ0
is the initial state wavefunction andφVk is the Volkov
wavefunction of momentumk. We take the absolut
square of the amplitude and sum over all final st
momenta to obtain

P
(1)
ion (t)=

t∫
ti

dt1

t∫
ti

dt2

∫
dkV (k, t1)V (k, t2)

(2)× exp
(−iS(k, t1, t2))∣∣φ̃0(k)

∣∣2,
whereV (k, t)= −k ·A(t)/c+A2(t)/2c2 andφ̃0(k) is
the Fourier transform of the initial state wavefunctio
The phaseS(k, t1, t2) consists of the joint action o
the Volkov electron in the velocity gauge and t
ionization potentialIP :

(3)S(k, t1, t2)=
t2∫

t1

dt ′
[

1

2

(
k(t ′)− A(t ′)

c

)2

+ IP

]
.

For a linearly polarized laser field with polarizatio
direction along thez-axis, we separate in Eq. (2) th
k-integration into a part along thez-axis and those
perpendicular to it. At high laser intensities the vec
potential is assumed to be large and the station
phase method (e.g., [2,3]) is applied to evaluate
kz-integral. There is one stationary pointks for each
pair (t1, t2),

(4)ks(t1, t2)= 1

cτ

t2∫
t1

dt ′A(t ′),

and we get

P
(1)
ion (t)≈ 2π2

t∫
ti

dt1

t∫
ti

dt2
V (ks, t1)V (ks, t2)√

2πiτ

(5)× exp
(−iS(ks, t1, t2))I (k⊥),

where

(6)I (k⊥)=
∞∫

0

d
(
k2⊥

) ∣∣φ̃0(k⊥, ks)
∣∣2 exp

(
−i τ

2
k2⊥

)
,

τ = t2 − t1 and

(7)S(ks, t1, t2)=
(
IP − k2

s

2

)
τ + 1

2c2

t2∫
t1

dt ′A2(t ′).

Using

Φ0(r)= 2λ3/2 exp(−λr)Y00(r̂), λ=Z

for the ground state of hydrogenic atoms, we evalu

I (k⊥)= 64πλ5g4(ks, τ )

with

g4(ks, τ )=
∞∫

0

dx
1

(x + β)4
e−iµx

(8)

= U(1,−2, iµβ)

β3 = exp(iµβ)
E4(iµβ)

β3 ,

where β = λ2 + k2
s > 0 and µ = τ

2. U(1,−2, z)
denotes the confluent hypergeometric function, wh
can be expressed for purely imaginary arguments
means of the fourth exponential integral functionE4.

Using the result in Eq. (5), we get

P
(1)
ion (t)

≈ 16λ5

t∫
ti

dt1

t∫
ti

dt2
V (ks, t1)V (ks, t2)g4(ks, τ )√

2πiτ

× exp
(−iS(ks, t1, t2))
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(9)

= 32λ5 Re

{ t∫
ti

dt1

t∫
t1

dt2

× V (ks, t1)V (ks, t2)g4(ks, τ )√
2πiτ

× exp
(−iS(ks, t1, t2))

}
.

In the last step we have ordered the time integ
tions so thatτ � 0. The integrand contains an in
tegrableτ−1/2 singularity and can be evaluated
direct numerical integration, since for small imag
nary argumentsz = ix the confluent hypergeome
ric function takes the form(1 − 1

2ix)/3. Please note
that a non-integrableτ−3/2 singularity occurs in the
final expression, if in Eq. (2) the stationary pha
method is applied to thek-integration in all three di-
mensions. Usually the integrations overt1 and t2 are
then performed by introducing a cutoff parameter [
As shown here, this additional approximation can
avoided in the case of linear polarization by perfor
ing the k⊥-integration exactly and applying the st
tionary phase method to thekz-integration only. We
may further stress that, in fact, for linear polariz
tion an asymptotically large parameter in the phas
present in the field direction only.

3. Results and discussion

Since we have taken into account the first or
term of the S-matrix series only,P (1)

ion is not the
total ionization probability, e.g., it is not restricted b
unity. But, it is possible to determine a well-defin
ionization rate, sinceP (1)

ion is found to depend linearl
on the interaction time. This is exemplified in Fig.
whereP (1)

ion (Tp) is shown as a function of the puls
length Tp, for an intense laser pulse at 800 nm a
1.053× 1015 W/cm2 having a sin2-pulse shape.

Thus, the validity of the present stationary pha
ansatz can be examined by evaluation of effective r
per pulse of lengthTp , defined by [11]

(10)Γ +
eff = − 1

Tp
ln

(
1− Pion(Tp)

)
usingPion ≈ P

(1)
ion (for P (1)

ion � 1).
Fig. 1.P (1)
ion as a function of the pulse length. The laser parame

were 800 nm and 1.053× 1015 W/cm2, the temporal pulse shap
was sin2.

For the sake of comparison, we have calculated
exact KFR expression for the instantaneous ioniza
rate [1],

Γ +(I)= 2π
∞∑

N=N0

∫
dk̂N kN(Up −Nω)2

(11)× J 2
N

(
α0 · kN ; Up

2ω

)∣∣φ̃0(kN)
∣∣2,

wherek2
N/2 = Nω − Up − IP is the kinetic energy

of the electron after absorbingN photons,N0 is the
minimum photon number needed to be absorbed
ionization,α0 = √

I/ω2 is the quiver radius andUp =
I/4ω2 is the ponderomotive energy of an electron
a laser field of intensityI and frequencyω. JN(a, b)
is the generalized Bessel function of two argume
(e.g., [1c,9]). The exact rates are then used in the
equation:

(12)
dPion(t)

dt
= Γ +(

I (t)
)(

1− Pion(t)
)
,

which is solved under the constraintPion(t = 0) = 0.
The result is used in Eq. (10) to obtain the effect
ionization rate for a finite pulse of lengthTp.

In Fig. 2 we compare the effective rates as a fu
tion of the peak intensity obtained by using the s
tionary phase method (open diamonds) with the ex
KFR results (lines) at different wavelengths betwe
400 and 1400 nm. The temporal profile of the pu
has been chosen to have a sin2-shape of 10-cycle dura
tion. It is seen from the figure that the results obtain
using the stationary phase method agree well with
exact KFR rates, as expected, at high intensities.
low a critical intensity the approximative results a
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stationary
r different
le
Fig. 2. Effective rates of ionization of the hydrogen atom by a strong laser pulse. Shown is a comparison between the results of a
phase approximation (open diamonds) to the first-order KFR theory and the exact KFR rates (lines). Calculations are performed fo
wavelengths, namely (a) 400 nm, (b) 616 nm, (c) 800 nm, (d) 1064 nm, (e) 1200 nm, and (f) 1400 nm. A sin2 temporal pulse shape of 10-cyc
duration is chosen.
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found to systematically overestimate the exact eff
tive rates. The results indicate that the application
the stationary phase method in a typicalS-matrix ex-
pansion is justified as long as the intensity of the la
pulse is above mid of 1013 W/cm2.

4. Summary

In conclusion, we have examined a stationary ph
approximation to the first-order KFR theory of atom
ionization in a strong linearly polarized laser fie
The stationary phase method has been applied to
momentum direction along the polarization directi
of the field only, in order to avoid a typical non
integrable singularity in the final expression for t
total ionization rate. It is found that the approximati
is valid for intensities above mid of 1013 W/cm2.
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