Experimental study of atomic Bose-Einstein condensates with internal degrees of freedom

Department of Physics,
Gakushuin University

Takuya Hirano
Experimental Quantum Optics Group at Gakushuin Univ.

Members
Prof. T. Hirano
Res. Assoc. S. Tojo (April 2006～)
Post. Doc. Yun Zhang (March 2006～)
D1 Y. Eto,
M2 K. Ishihara, M. Iwata, K. Sirasaki, T. Tajima, T. Furuta
M1 S. Tokunaga, A. Furuki
B4 R. Okubo, Y. Sanada, M. Tamaki, A. Tomiyama,
K. Nagashima, T. Hayashi

Topics
• BEC of Rb atoms
• Contineous-variable (CV) quantum information using pulsed light
 Quantum cryptography using pulsed homodyne detection
 “Plug & play” and free-space implementation at telecommunication. wavelength
• CV quantum entanglement with pulsed light
• Pulsed squeezing at telecomm. wavelength
1. Motivation

2. Experimental apparatus

3. Atomic BEC with internal degrees of freedom
 - Dynamical Properties of ^{87}Rb Spin-2 BEC
 - Optical Confinement of Binary BEC: simultaneous trap of F=1 and F=2
 - Vortex Formation via magnetic field reversal

Thanks to former members: T. Kuwamoto, H. Usuda, K. Hamazaki, Y. Nara

4. Summary
Motivations

Spin degrees of freedom $F=2$ spinor condensate

- Is ground state of ^{87}Rb ferro, anti-ferro, or cyclic states?
- Mixture of $F=1$ & $F=2$ spinor BEC
- Vortex states in spinor BEC
- etc…

Novel Physics in Quantum Fluids with spin Degree of Freedom
Experimental setup (1)

Double-MOT

- push beam

1st MOT
- 20 l/s ion pump
- 150 l/s ion & Ti:sublimation pump
- ultra-cold 87Rb < 10^9

2nd MOT
- glass cell

- ECLD (handmade)
- TC-40 tapered amplifier laser
- LD (injection locked)

- frequency stabilization
- repump

55mW
- to 1st MOT
- to 2nd MOT

2mW
- 55mW
- 280mW
- probe
- pump (MOT to MT)
- push (1st to 2nd MOT)
Atoms in an optical trap

Optical trap potential

\[U = -\frac{1}{2} \alpha \cdot |E|^2 \]
\[\propto -\frac{P}{\Delta} \]

\(\alpha \): polarizability, \(E \): electric field
\(P \): laser power
\(\Delta \): detuning (f_{laser} - f_{resonance})

Spin degrees of freedom are liberated in an optical trap.

First success in Jan. 2000
Setup of Optical Trap

Top view

- OT Beam (axial)
- OT Beam (radial)
- Coils for magnetic trap
- Mirror
- 5 deg.
- r (radial)
- g
- z (axial)
- \(\lambda : 850 \text{ nm} \)
- Power fluctuation <1%
- Beam waist radius
 - radial: 90 \(\mu \text{m} \)
 - axial: 24 \(\mu \text{m} \)
- Potential depth of OT
 - \(U \sim 1.0 \ \mu \text{K} \)

- Create BEC in magnetic trap
- Overlapping Trapping beam
- 120ms
- Adiabatic increase in power
Lifetime of BEC in Optical Trap - Stretched State ($F=2$, $m_F=-2$) -

- Loss rate
 (in the region of $N < 1 \times 10^5$)

 \[\tau_{\text{magnetic trap}} \sim 7 \text{ s} \]
 \[\tau_{\text{optical trap}} \sim 4 \text{ s} \]

 photon scattering rate
 \[2 \times 10^{-3} \text{ /s} \]

Number of condensed atoms vs. Trap time (s)

Absorption image of the BEC in the optical trap
Manipulation of Spin States

energy level diagram of 87Rb ground hyperfine states

B=20G

m_F

2

1

0

-1

-2

Initial state

F = 2 state

14.020 MHz

$\Delta = 58$ kHz

14.078 MHz

BEC

optical trap

homogeneous magnetic field

B=20G

rf field

(Frequency is swept)

Parameter of rf field

center frequency : 14.078 MHz

sweep range : 80 kHz

sweep time : 1～3 ms

It is possible to selectively prepare any states.
Spatial separation by Stern-Gerlach method

We could prepare highly polarized (almost pure) $m_F=0$ BEC. Transfer rate $>90\%$
Decay of $F=2$, $m_F=0$ BEC in OT at $B = 1.5G$

Atoms in BEC initially polarized in $F=2$, $m_F=0$ state.

$m_F=\pm 1$ components appeared during decay process.

Time evolution of $m_F = -1, 0, +1$ components.

Total-spin-conserved spin-relaxation process.
Magnetic field dependence of spin-mixing dynamics

Oscillation in spin populations
@ $B = 0.75 \text{G}$, 0.3G

cf. F=1 Josephson Oscillation:
Nature Physics 1, 111 (2005)
If the $F = 2 \ ^{87}\text{Rb}$ BEC has **anti-ferromagnetic properties**, the mixture of $m_F = -2$ and $m_F = +2$ is one of the ground states at a zero magnetic field. [M.Ueda & M.Koashi, PRA, 65, 063602 (2002)]
Magnetism of F=2 87Rb BEC

If cyclic

initial config.
$m_F = -2 & +2$

$m_F = -2 & 0 & +2$

actually...

$m_F = -2 & +2$

indicates anti-ferromagnetic, but small population in $m_F = \pm 1$...
Simultaneous trap of $F=1$ and $F=2$ Rb BEC

JILA : magnetic trap
capable of trapping only weak field seeking states

Our experiment : optical trap
capable of trapping any states, even for anti-parallel magnetic moment
Control of magnetic field
Microwave transition

\[\Delta \nu \approx 535 \text{[kHz]} \]

\[B \approx 255 \text{[mG]} \]

5S_{1/2} \rightarrow F=1, g_F=-1/2

\(F=2, g_F=1/2 \)
Experimental setup

Microwave: 6.83415GHz, ~15dBm

Optical trap:
- 850nm
- \(\nu_r \approx 237 \text{ Hz} \)
- \(\nu_z \approx 21 \text{ Hz} \)

Wave guide
- Helmholtz coil
- Trap beam

Amplifier
- Solid state switch
- Isolator

Microwave synthesizer: ~6.8GHz
Time evolution for $N_{F=1} = N_{F=2}$ (without Stern-Gerlach)

Trap time
- 0 ms
- 200 ms
- 400 ms
- 600 ms

TOF
- 22 ms

Field gradient $\frac{\partial B}{\partial z} \sim -30 \text{ mG/cm}$

Change bias field
- $\Delta B \sim 0.3 \text{ mG}$
- $\Delta E \sim 20 \text{ nK}$

Force directions are reversed.
Center of mass movement of F=2 component

Change bias field
Experiment procedure

|2,-2> → |1,-1> Microwave transition

Initial state

Change bias field

Time (ms)

Optical trap

Magnetic trap

Bias field

Micro wave

Probe light

Evolution time 22
Topological Vortex Nucleation in Bose-Einstein Condensates

\[\mathbf{B} \times (t) \mathbf{B} \perp (r) \mathbf{B} \]

500mG

\[B_{total} \cong B_z \]

Invert B

\[(B_z) = 0, B_{total} \cong \mathbf{B}' \]

87Rb : F=2, \(m_F = 2 \)

\[\oint_c \mathbf{V} \cdot d\mathbf{s} = \frac{\hbar}{m} \cdot 8\pi = \frac{\hbar}{m} \cdot 2\pi \cdot 4 \]

23Na (F=1, \(m_F = -1 \))
87Rb (F=2, \(m_F = 2 \))
Kyoto group, Annual meeting JPS, 2004, 27aXG-3

Atomic spin

\[^{87}\text{Rb} : F=2, m_F = 2 \]

\[^{23}\text{Na} (F=1, m_F = -1) \]

\[^{87}\text{Rb} (F=2, m_F = 2) \]
Observation of vortex

Experimental procedure
1. Create BEC in a magnetic trap
2. Invert the magnetic field
3. Absorption imaging
Simultaneous imaging from two directions

Inverting time: 3~13ms

- No trapping potential along z axis after inverting the bias field
- We can observe vortex up to 10ms trap-time

TOF: 19ms, Inverting time: 5ms
Summary

• Ground state of 87Rb Spin-2 BEC

 For $m_F=0$ initial state, decay at various magnetic field strengths
 → Spin relaxation, population oscillation

 For $m_F=\pm 2$ initial state, atoms remain in $m_F=\pm 2$
 → Antiferromagnetic

• Optical Confinement of Binary BEC: $F=1$ and $F=2$

 Spatial separation, center of mass movement, domain structure were observed.

• Vortex Formation via magnetic field reversal

 Charge 4 vortex, simultaneous imaging from two directions
 up to 10 msec in magnetic trap,
 up to ~20 msec in optical trap.