Tunable negative refraction based on quantum interference

Susanne Yelin
Dept. of Physics, University of Connecticut

Jürgen Kästel, Michael Fleischhauer
TU Kaiserslautern, Germany

Ron Walsworth
Harvard/Smithsonian CfA

Breckenridge, August 25, 2006
Model

normal refraction
(Snell’s law)

\[
\theta' < \theta
\]
Model

\[
n = 1 \quad \text{and} \quad n' = -1
\]

Veselago (68), Pendry (90’s)

negative refraction (Snell’s law) \quad \text{“left-handed”: } E, B, \text{ and } k
normal refraction

negative refraction
Contents

• Definitions & examples
• Chiral media
• EIT based negative refraction
 – Local field effects
 – Tunability
• Conclusion
Origin of negative refraction

\[n = \sqrt{\varepsilon \mu} \]

\(\varepsilon \): electric permittivity

\(\mu \): magnetic permeability

With both, \(\varepsilon \) and \(\mu \) negative \(\Box \) \(n \) negative
Applications and Definitions

• Applications:
 – perfect lens
Superlens

normal lens:

\[k_x = \sqrt{\frac{\omega^2}{c^2} - k_z^2} \]

☑ Resolution: \[2\pi k_x^{-1} \geq \lambda \]
Applications and Definitions

- **Applications:**
 - perfect lens

- **Definitions:**
 - negative refraction
 - left-handed materials
 - chiral materials
 - meta-materials

Re(n) < 0

\(E, B, \text{ and } k\) are lefthanded

Turned polarization \(\leftrightarrow E\)-, \(B\)-cross coupled

man-made refraction
Material examples

• μ-wave structures:

Pendry

Shalaev
Photonic bandgap material

- Use band structure of the photonic crystal to get a left-handed material ("flip over" k vector direction on Fermi surface)

- For certain frequency: negative refraction
- But: not "metamaterial": No resolution beyond λ! (✓ no superlensing!)
Absorption

So far: refraction/absorption ≈ 1…5

Our case: Re(n)/Im(n) = 100
Occurrence of negative refraction

- Why does negative index not occur in Nature?

Large χ_m very difficult to achieve!
Optical frequencies

Magnitude of χ_m:

$$|\chi_m| \approx \left(\frac{\mu_{\text{atom}}}{d_{\text{atom}}} \right)^2 |\chi_e| \approx \frac{1}{137^2} |\chi_e|$$
Chiral media (Pendry)

• Remember: \[n = \sqrt{\varepsilon \mu} \]
Chiral media (Pendry)

- Remember: \[n = \sqrt{\varepsilon \mu} \]
- Chiral media: cross coupling between electric and magnetic fields
 \[P = \chi_e E + \xi_{eb} B \]
 \[M = \xi_{be} E + \chi_m B \]
 with \[|\xi| \propto \frac{1}{137} |\chi_e| \]

- Index of refraction
 \[n = \sqrt{\varepsilon \mu - \xi} \]

If we choose \[\xi_{EH} = -\xi_{HE} = i\xi \]
EIT based negative refraction

V-type system:
- \(E, B \) electric/magnetic part of probe field
- \(\Omega \) cross couples electric and magnetic transition

Chiral behavior
- \(\gamma_0 \ll \gamma \), EIT

\[|1 \rangle_g \rightarrow |2 \rangle_g \rightarrow |3 \rangle_g \]

absorption \((\chi_e'')\)
dispersion \((\chi_e')\)
EIT based negative refraction

Problems:

- Ω: dc-coupling \checkmark, phase of ξ not free to choose
- Ω dc-coupling: very weak Rabi frequency
- no EIT for inhomogeneously broadened systems
- level scheme hard to find in real systems
Realistic schemes

- Create dark state in superposition of $|1\rangle$ and $|4\rangle$

- Dark state acts like g.s. in 3-level system

\[|\text{dark}\rangle \propto \Omega_1 |1\rangle - \Omega_2 |4\rangle \]
Realistic schemes

Advantages:
• Non-dc coupling field Ω

Choose phase
Realistic schemes

Advantages:

- Non-dc coupling field Ω
 - Choose phase
- States $|2\uparrow\rangle$ and $|4\uparrow\rangle$ can be chosen at similar energy
 - No Doppler broadening on sensitive Λ-type scheme ($|4\uparrow\rangle$, $|2\uparrow\rangle$, and $|3\uparrow\rangle$)
- Easier to realize

- $|3\uparrow\rangle$
- $|2\uparrow\rangle$
- $|5\uparrow\rangle$
- $|E\uparrow\rangle$
- $|B\uparrow\rangle$
- $|4\uparrow\rangle$
Realistic schemes

\[\gamma = \gamma_3 \]

\[\gamma_2 \]

\[\gamma_5 \]

\[+ \text{ line broadening (inhomogeneous)} \]
Cross couplings

Inhomogeneous broadening \approx decay rate γ

χ_{e}
ξ_{eb}
ξ_{be}
χ_{m}

real part
imaginary part
Index of refraction

density $N = 5 \times 10^{16}$ cm$^{-3}$

$$n$$

real part

imaginary part

detuning from resonance Δ/γ
Local field corrections

\[E \rightarrow E_{loc} = E + \frac{4\pi}{3} P \]
\[B \rightarrow B_{loc} = B + \frac{4\pi}{3} M \]

re-calculate \(\chi \)'s and \(\xi \)'s . . .
Local field corrections

density $N = 5 \times 10^{16} \text{ cm}^{-3}$

detuning from resonance Δ/γ
Density dependence

imaginary part \(\rightarrow 100\)

real part

Logarithm of density \(10^x\) cm\(^{-3}\)
Fine tuning

n can be **tuned** by changing coupling field Rabi frequency Ω:

![Graph showing the real and imaginary parts of n as a function of the logarithm of Rabi frequency $\Omega = 10^x \gamma$.](image)

Application: e.g., for superlens, $n=-1$ is needed **exactly**!
Realization schemes

• **Atoms**: e.g. Neon

• **Molecules**: Use different rotational levels for different parities

• **Bound excitons**: use D^0 states with different parities for lower, and D^0X states with different parities for upper states.
Outlook

• Materials:
 – Problem of high-frequency M1 transitions in atoms and molecules
 – Parity in solid state systems
• Dimension: 3D?
• Comparison with “traditional” method + gain
• Systems:
 – Optimize level scheme
 – Utilize tensorial character of ε
Conclusions

• Use of negative refraction:
 – superlenses and others

• Metamaterials:
 – chiral media for presence of cross coupling
 – EIT for suppression of absorption
 – energy and Rabi freq. of coupling fields for tuning
<table>
<thead>
<tr>
<th></th>
<th>normal refraction</th>
<th>negative refraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>phase velocity $v \approx c$</td>
<td>Group velocity $v_{gr} < v$</td>
<td>phase velocity $v \approx -c$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>group velocity $v_{gr} \approx +c$</td>
</tr>
</tbody>
</table>
Problem: absorption

Kramers - Kronig: relationship between refraction/absorption

large χ_e' (refraction) □ large χ_e'' (absorption)
Cross couplings

atomic picture:

\[
\rho_{34} = \alpha_{ee} E + \alpha_{eb} B
\]

\[
\rho_{21} = \alpha_{be} E + \alpha_{bb} B
\]

Solve for \(\alpha \) \(\checkmark \) . . .
Different approach

• usual problem: $\mu (\chi_m)$
• Instead: leave μ and make ε into tensor (“geometric approach”)

normal
birefringent
“very birefringent”

\vec{k} wave vector

\vec{S} Poynting vector

Disadvantage: works only in waveguide (i.e. 1D)

Podolskiy, Narimanov, PRB R201101, (2005)
Neon

2p^6

2p^5(2P_{3/2})3s

352 nm

2p^5(2P_{1/2})3s

5.4 μm

2p^5(2P_{1/2})4p

2p^5(2P_{1/2})3d

Thommen, Mandel, PRL 96, 053601 (2006)
Molecular or solid state levels

one even, one odd parity (e.g., even and odd rotational level) for \(|1\text{g}\) and \(|4\text{g}\)
Bound exciton

momentum picture:

singlet

exciton

quadruplet

cited state (D^0X)

ground state (D^0)

(e.g., 5-electron atom in a 4-valence electron lattice)
Bound exciton

momentum picture:

singlet

donor

exciton

quadruplet

vb

cb